

Version V2.0-20241225

User Manual For Tersus GNSS Center

©2024 Tersus GNSS Inc. All rights reserved.

Sales & Technical Support:

sales@tersus-gnss.com & support@tersus-gnss.com

More details, please visit www.tersus-gnss.com

Revision History

Version	Revision Date	Change Summary
1.0	20200909	Initial release
1.1	20211109	Upgrade section 2.3.3&3.4
2.0	20241225	Release for Tersus Tool Suite 2 new version

Table of Content

Revision History1
Table of Content
List of Figures
List of Tables6
1. Introduction7
1.1 Overview
1.2 Features
1.3 System Requirements9
2. Functions
2.1 Config window10
2.1.1 Connection
2.1.2 Working mode
2.1.3 Save option
2.2 Interface and functions
2.2.1 Menu bar
2.2.2 Tool bar
2.2.3 Skyplot view
2.2.4 Signal strength view25
2.2.5 Console window
2.2.6 Command window27
2.2.7 Board Info27
2.2.8 Trajectory view28
2.2.9 RF spectrum view
2.2.10 Status bar
2.2.11 Other views
2.3 Tools

2.3.1 Tersus Rinex Converter	32
2.3.2 Tersus Update	
2.3.3 Tersus Download	
2.3.4 Tersus GeoPix	35
3. General operations	36
3.1 Connect to a BX RTK board	
3.2 Configure RTK board with commands	38
3.2.1 Configure the board into base station mode	38
3.2.2 Configure the board into rover mode	39
3.3 Data logging	40
3.4 Convert Raw Data into Rinex	
4. Terminology	44

List of Figures

Figure 1.1	Tersus GNSS Center main interface	7
Figure 2.1	Connection config – serial connection	11
Figure 2.2	Device manager	11
Figure 2.3	Connection config – demo file	12
Figure 2.4	Base mode configuration	13
Figure 2.5	Options for RTCM2	14
Figure 2.6	Options for RTCM3	14
Figure 2.7	Options for CMR	15
Figure 2.8	Output options	15
Figure 2.9	Configure COM1 for rover mode	
Figure 2.10	Configure COM2 for rover mode	
Figure 2.11	Configure USB for rover mode	17
Figure 2.12	Configure FILE for rover mode	18
Figure 2.13	Save option config	19
Figure 2.14	Tersus GNSS Center main interface	20
Figure 2.15	Ntrip Setting	22
Figure 2.16	Set environment preferences	23
Figure 2.17	Tersus Center Version	23
Figure 2.18	Skyplot view	24
Figure 2.19	Signal strength view	25
Figure 2.20	Text console window	
Figure 2.21	Track info window	26
Figure 2.22	Log window	
Figure 2.23	Command window	27
Figure 2.24	Board Information	27
Figure 2.25	Map View	27
Figure 2.26	Trajectory view	
		4 / 45

Figure 2.27	RF spectrum view	29
Figure 2.28	Indicators	
Figure 2.29	Connection status	30
Figure 2.30	Altitude info	31
Figure 2.31	UTC time	31
Figure 2.32	Velocity info	31
Figure 2.33	Heading info	31
Figure 2.34	Tersus Rinex Converter	32
Figure 2.35	Update firmware	33
Figure 2.36	Tersus download	
Figure 2.37	GeoPix main interface	35
Figure 3.1	Connection configuration	
Figure 3.2	Command prompt and text console	38
Figure 3.3	Save Received Data option	40
Figure 3.4	Choosing saved data location	41
Figure 3.5	Converting data	43

List of Tables

Table 1	System Requirements for Tersus GNSS Center	9
Table 2	Indicators description	30
Table 3	Common used RTCM messages	39

1. Introduction

This user manual introduces how to use Tersus GNSS Center software.

1.1 Overview

The Tersus GNSS Center is configuration tool for Tersus GNSS products. This software integrates configuration, monitoring, data logging, firmware upgrade and other useful tools. With Tersus GNSS Center, you can communicate over the on-board serial ports, key in commands to configure the board, forward the NTRIP correction data received to the board, upgrade firmware, store data, playback data, convert data to RINEX format, display rover's trajectory in Google map, calculate the average position of the base station, view status of the board and positioning results.

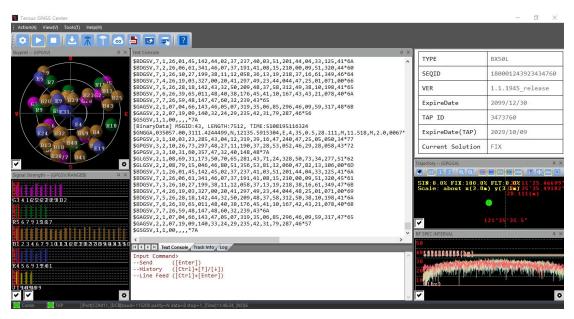


Figure 1.1 Tersus GNSS Center main interface

1.2 Features

Tersus GNSS Center has following features:

- > Communicate over the on-board serial ports
- > Key in commands to configure the board
- Forward the NTRIP correction data received to the board
- Upgrade firmware
- Store data, playback data
- Convert data to RINEX format
- > Display the rover's trajectory in Google map
- Calculate the average position of the base station
- > View status of the board and positioning results

1.3 System Requirements

Tersus GNSS Center is to run on a wide range of different computer configurations. The systems requirements are listed as below:

Operating System	Microsoft Windows 7, 8, 10 (32-bit and 64-bit)				
Hardware	Minimum	Recommended			
Processor	Intel Core i3	Intel Core i5			
RAM	4GB	8GB			
Hard disk	10GB	1TB			
Graphics card	Direct X9 compatible	Direct X9 compatible 2GB			
	integrated graphics	discrete graphics			
Internet Connection	Ability to originate both http an	d https (SSL) connections			

Table 1 System Requirements for Tersus GNSS Center

2. Functions

This chapter describes the detailed operations of Tersus GNSS Center

Before using Tersus GNSS Center software, ensure one BX board or one receiver of David series GNSS Receiver is powered up and connected to the computer via serial port. The physical connection refers to corresponding user manual which can be downloaded from Tersus website

https://tersus-gnss.com/document.

2.1 Config window

When launching Tersus GNSS Center, the config window pops up automatically. This window can also be found in the menu bar Tools -> Config.

2.1.1 Connection

Under the connection tab, there are two options:

1) Serial

If choosing Serial as connection type, choose the right port when a Tersus GNSS board or receiver is connected to computer via serial port. The serial port can be found in the windows device manager and obtained by clicking

implication of the selected in the drop-down list.

The baud rate is 115200 bps by default. It is not recommended to change baud rate. The 'Save Received Data' function is turned on by default. It can be turned off manually.

	Save Option	12			
С	onnection Type:	Serial		~	
	Serial Setting		Cause Data	eived Data	
1	Port:	COM9 V	Save Rece	elved Data	
			ON	OFF	
	Baud Rate:	115200 ~			
	Working Mode				
		ansale Warking Made			
	Command Co	onsole Working Mode			
	Command Command Command Command Command O Base Station	Config Mode			
	 Command Co Base Station Rovel Station 	n Config Mode n Mode			
	Command Command Command Command Command O Base Station	n Config Mode n Mode			

Figure 2.1 Connection config - serial connection

Figure 2.2 Device manager

2) Demo file

If choosing demo file as connection type, click the file path and choose the demo file, selecting loop can play the demo repeatedly, then click [OK] to start playing demo file. The demo file can be .trs, .nmea, .dat format files.

	The second se	o File	~	
Serial Sett	ing	~	Save Receive	OFF
Baud Rate: Demo File S Input File	Setting	00 ~		
Play Speed	d			Loop

Figure 2.3 Connection config – demo file

2.1.2 Working mode

There are three working mode to choose: command console working mode, base station config mode, and rover station mode.

1) Command console working mode

This mode is the major mode that is introduced in this user manual.

2) Base station config mode

If choosing base station config mode, it pops out below config window. Configuring parameters for base station by selecting in drop-down options is another method which is different from command configuration.

You can fill in the coordinates of the base station or tick Posave on to enable auto base station.

Lat	Lng		Height(MSL)	Туре
		Auto Dese		Degree ~
) Use fix p	oositon	Auto Base O Posave	on 🗌	
Differential GN	SS Messages Ou	itput		
COM1		23	82	14 J.
None	○ RTCM2	O RTCM3	◯ CMR	Detail
COM2				
○ None	⊖ RTCM2	● RTCM3	◯ CMR	Detail
USB				
None	ORTCM2	ORTCM3		Detail
)ata Recordin	g Mode			
() Auto	Manual			Detail
Others				
Antenna He	ight 0.0000	00 Metre		

Figure 2.4 Base mode configuration

For differential GNSS message output, you can configure RTCM2, RTCM3 or CMR message for the current communication port. Click [Detail] to configure corresponding message types.

Extended Base Statior	1	RTCM22	OFF	~
GPS Reference Statior	n Parameter	RTCM3	OFF	~
Uncorrected Raw Mea	surement	RTCM1819	OFF	~

Figure 2.5 Options for RTCM2

elect Option I	For RTCM3							12		>
Station Info		second)						RTCM1005	OFF	
		with Antenna Hei	aht					RTCM1005	ontime 10	~
Extended A		177 STORES	gine					RTCM1007	OFF	~
		ference Station De	accription					RTCM1007	OFF	~
			scription					RTCM1008	ontime 30	
Receiver and antenna descriptors GLONASS L1 and L2 Code-Phase Biases Message							RTCM1230	ontime 30	- 523	
		oue-Filase biases i	ressage					1011250	Untime 50	_
Ephem Info								RTCM1019	OFF	
GPS Ephem								RTCM1019		~
GLONASS Ephemerides						RTCM1020 RTCM1042	OFF	1		
BDS Ephem	iences							KTCM1042	UFF	~
Observables	;									
MSM4, GPS	Code, Pha	ise and CNR Measu	rements					RTCM1074	ontime 1	~
MSM4, GLOI	NASS Code	e, Phase and CNR I	Measureme	ents				RTCM1084	ontime 1	~
MSM4, BeiD	ou Code, I	Phase and CNR Mea	asurement	S				RTCM1124	ontime 1	~
RTCM1001	OFF	✓ RTCM1012	OFF	~	RTCM1013	OFF	~			
RTCM1002	OFF	~ RTCM1071	OFF	~	RTCM1081	OFF	~	RTCM1121	OFF	~
RTCM1003	OFF	~ RTCM1072	OFF	~	RTCM1082	OFF	~	RTCM1122	OFF	~
RTCM1004	OFF	✓ RTCM1073	OFF	~	RTCM1083	OFF	~	RTCM1123	OFF	~
RTCM1009	OFF	V RTCM1075	OFF	~	RTCM1085	OFF	~	RTCM1125	OFF	~
RTCM1010	OFF	RTCM1076	OFF	~	RTCM1086	OFF		RTCM1126	OFF	~
	OFF	~ RTCM1077	OFF	~	RTCM1087	OFF	~	RTCM1127	OFF	~

Figure 2.6 Options for RTCM3

Station Info Base station position		CMRREF	OFF	~
Base station description	information	CMRDESC	OFF	~
Observables			- 80 112	
Base station satellite obs	ervation information	CMROBS	OFF	~
Base station position info	ormation (low rate)	CMRPLUS	OFF	~

Figure 2.7 Options for CMR

For data recording mode, you can choose auto or manual, click [Detail] to

configure corresponding output options.

Output Config								
RANGECMP(B)	OFF	~	RANGE(B)	OFF	~			
GPSEPHEM(B)	OFF	~	GLOEPHEMERIS	OFF	~	BDSEPHEMERIS(B)	OFF	~
BESTPOS(B)	OFF	~	BESTXYZ(B)	OFF	~	BESTVEL(B)	OFF	~
THISANTENNA(B)	OFF	~	MARKTIME(B)	OFF	~			
Fi	nish				Cance	el		

Figure 2.8 Output options

You can also set antenna height under Others. Click [Config&Save] to finish the base mode configuration.

3) Rover station mode

If choosing rover station config mode, it pops out below config window. In the rover mode configuration interface, you can configure rover's output from COM1/COM2/USB/File.

NMEA Out	put									
	tioning System	Fix Da	ata			GPG		ontin	ne 1 🗸 🗸	
	tes in view					GPG	-	OFF	~	
Actual trac	k made good a	nd sp	eed	over gro	ound	GPV	TG	OFF	~	1
GPZDA	OFF ~	GPG	RS	OFF	~	GPR	MC	ontin	ne 1 🔍	
GPHDT	OFF v	GPGS	SA	ontime	5 ~	GPN	ITR	OFF	~	7
GPGLL	OFF v	GPG	ST	OFF	~					
Other Out	put									
RANGE	ontime 5	~ B	INAR	(Y ~	BESTPO	S	ontime 1	~	BINARY	
BESTVEL	OFF	~ B	INAR	Y V	BESTXY	z	OFF	~	BINARY	
RANGECM	OFF	~ B	INAR	tY v	PSRDOP		OFF	~	BINARY	
PSRXYZ	OFF	~ B	INAR	Y v	HEADIN	3	OFF	~	BINARY	1
SATVIS	ontime 5	~ B	INAR	Y v	TRACKS	TAT	OFF	~	BINARY	
MARKTIME	OFF	VB	INAR	Y V	MARKPO	S	OFF	~	BINARY	

Figure 2.9 Configure COM1 for rover mode

NMEA Out Global Posi	and the second second	tem Fi	x Data		GP	GGA	OFF	~	1
GPS Satelli					GP	GSV	OFF	~	
Actual trac	k made go	od an	d <mark>s</mark> peed	over gr	ound GP	VTG	OFF	~	
GPZDA	OFF	~ (PGRS	OFF	→ GP	RMC	OFF	~	1
GPHDT	OFF	~ (SPGSA	OFF	↓ GP	NTR	OFF	~	1
GPGLL	OFF	~	FORT	OFF	~				1
Other Out	276							[
RANGE	OFF	~	BINA	RY ~	BESTPOS	OFF	~	BINARY	,
BESTVEL	OFF	~	BINA	RY ~	BESTXYZ	OFF	~	BINARY	`
RANGECM	OFF	~	BINA	RY 🗸	PSRDOP	OFF	~	BINARY	1
PSRXYZ	OFF	~	BINA	RY ~	HEADING	OFF	~	BINARY	1
SATVIS	OFF	~	BINA	RY ~	TRACKSTA	OFF	~	BINARY	1
MARKTIME	OFF	~	BINA	RY v	MARKPOS	OFF	~	BINARY	

Figure 2.10 Configure COM2 for rover mode

Global Posit	ioning System	Fix Data		GPG	GA	ontin	ne 1 🗸 🗸
GPS Satellit	es in view			GPG	SV	ontin	ne 1 🗸 🗸
Actual track	k made good a	nd speed	over gr	ound GPV	TG	OFF	Ŷ
GPZDA	OFF v	GPGRS	OFF	✓ GPR	мс	OFF	Ŷ
GPHDT	OFF ~	GPGSA	OFF	V GPN	TR	OFF	~
GPGLL	OFF v	GPGST	OFF	~			
Other Out	put						
1.13 March 1999				BESTPOS			
RANGE BESTVEL		V BINA		BESTRUS	OFF	~	BINARY
RANGECMP	OFF	V BINA		PSRDOP	OFF	~	BINARY
PSRXYZ	OFF			HEADING	OFF	~	BINARY
SATVIS				TRACKSTAT	OFF	~	BINARY
MARKTIME		V BINA	RY v	MARKPOS	OFF	~	BINARY

Figure 2.11 Configure USB for rover mode

Global Posi	put tionina Sve	tem F	ix Data		GPG	GA	OFF	~	
GPS Satelli					GPO	SV	OFF	~	
Actual trac	k made go	ood ar	nd speed	over gr	ound GPV	/TG	OFF	~	
GPZDA	OFF	~	GPGRS	OFF	V GPR	MC	OFF	~	
GPHDT	OFF	~	GPGSA	OFF	V GPN	ITR	OFF	~	
GPGLL	OFF	~	GPGST	OFF	~		1		
Other Out	put								
								[
RANGE	OFF		BINA		BESTPOS	OFF	~	BINARY	~
	OFF		BINA		BESTXYZ	OFF	~	BINARY	Y
RANGECMP		5	BINA		PSRDOP	OFF	~	BINARY	~
PSRXYZ	OFF		BINA		HEADING	OFF	~	BINARY	~
SATVIS	OFF		BINA	RY 🗸	TRACKSTAT	OFF	~	BINARY	~
	OFF		BINA	RY V	MARKPOS	OFF	V	BINARY	

Figure 2.12 Configure FILE for rover mode

After setting all required parameters, click [Config&Save] to finish the rover mode configuration.

2.1.3 Save option

Under the save option tab, the output directory can be set, the data format options can be checked according to different requirement. The log option is .log by default.

Connection Save Option	1	
Output Setting		
Output directory	c:\TersusData\	
Save Option	rs)	
NMEA only(nmea)	
Binary data	only(.bin)	
Binary data	only(.bin)	
Log Option		
Log(.log)		

Figure 2.13 Save option config

2.2 Interface and functions

Г

The main interface of Tersus GNSS Center is shown as below.

Tersus GNSS Center	1. Menu bar	2. Tool bar	r		- 5 ×
Action(A) View(V) Tools(T) Help(H)	\$EDGSV,7,2,26,66,61,341,46,6 \$EDGSV,7,3,26,10,27,199,38,1 \$EDGSV,7,4,26,19,03,327,00,2 \$EDGSV,7,5,26,28,18,142,43,3 \$EDGSV,7,5,26,28,18,142,43,3 \$EDGSV,7,7,62,63,948,147,47,6 \$EDGSV,7,7,26,59,48,147,47,6	2, 37, 237, 40, 03, 51, 201, 44, 04, 33, 7, 37, 191, 41, 08, 15, 210, 00, 09, 51, 11, 20, 683, 65, 131, 9, 218, 37, 16, 61, 9, 41, 297, 49, 23, 44, 044, 47, 25, 04, 0, 38, 176, 45, 41, 10, 167, 43, 43, 21, 0, 32, 139, 35, 06, 85, 226, 46, 09, 50, 16, 22, 239, 34, 75, 83, 21, 46, 47, 43, 32, 21, 0, 32, 139, 35, 06, 85, 226, 46, 09, 50, 14, 29, 235, 42, 31, 79, 287, 46* 56 H: 7512, TIME: 5108195116324 9, N, 12135, 5915304, E, 4, 174, 25	0 × 125,41*66 ↑ 329,44*60 ↑ 329,44*66 ↑ 871,00*66 ↓ 198,41*65 ↓ 878,40*66 ↓	/FR ExpireDate	- • • ×
Signal Strength (SPGSV/RANGE8) 2 5 5 5 5 5 5 5 5 5 5 5 5 5	\$GPGSV, 3, 3, 10, 31, 60, 357, 47, 3 \$GLGSV, 2, 1, 08, 69, 31, 173, 59, 7 \$GLGSV, 2, 2, 08, 79, 15, 946, 46, 8 \$BDGSV, 7, 1, 26, 01, 45, 142, 45, 6 \$BDGSV, 7, 1, 26, 06, 61, 341, 46, 6 \$BDGSV, 7, 3, 26, 10, 27, 199, 38, 1 \$BDGSV, 7, 4, 26, 19, 93, 327, 00, 2	2, 46, 148, 48 ^{+7A} (6, 57, 84, 43, 71, 24, 328, 56, 73, 34, 7 (9, 51, 356, 53, 81, 12, 466, 47, 82, 13, 23, 72, 74, 14, 51, 221, 44, 64, 33, 77, 37, 191, 41, 68, 15, 218, 66, 69, 51, 1, 12, 658, 57, 13, 19, 218, 38, 16, 61, 4, 12, 574, 62, 32, 44, 464, 44, 55, 61, 4, 12, 574, 62, 32, 44, 464, 44, 55, 61, 4, 12, 594, 62, 34, 404, 44, 55, 61, 4, 12, 594, 62, 34, 404, 44, 45, 50, 14, 2, 56, 269, 48, 37, 58, 312, 50, 50, 50, 50, 50, 50, 54, 56, 54, 56, 56, 55, 256, 4, 66, 55, 256, 46, 56, 55, 256, 46, 56, 56, 55, 256, 46, 56, 56, 56, 56, 55, 256, 46, 56, 56, 56, 56, 56, 56, 56, 56, 56, 5	106,00*6D Inge 125,41*6A 320,45*61 349,47*6B SI 071,00*69 Sc	(N:0.0% FIX.100.0 cale: about x(3.0	ajectory
A. Signal strength J1940609 Comm International point of the strength Point Comm	(({))] Text Console/ frack info (to Input Command> Send ([Enter]) History ([Ctr]]+[1]/[4]) Line Feed ([Ctr]]+[Enter])	0. Status bar		9.	RF SPEC

Figure 2.14 Tersus GNSS Center main interface

2.2.1 Menu bar

The menu bar includes below options:

1) Action

Under the action tab, it has three options: Play, Stop and Quit.

2) View

Under the view tab, it has five options: Restore Layout, Windows, Status Bar, Skin and Map.

Restore Layout	restore layout of interface after the software restart
Windows	check which window to display
Status Bar	check to display or not display status bar at the bottom
Skin	choose from seven skin types for this software
Мар	display Google map in the board information window

3) Tools

Under the tools tab, it has three categories:

- a. Config, Peferences, Base Station Config, Rover Station Config, Ntrip Config and Output Config;
- b. Show position summary, Pin output, and Erase Trajectory;
- c. RINEX Converter and Update Firmware.
- 4) Help

Under the help tab, it shows the Tersus GNSS Center version.

2.2.2 Tool bar

The tool bar shows different tools in icons.

\$	configure connection and save option, details refer to section 2.1.
	enable the serial port connection, or play the demo file.
	disable the serial port connection, or stop playing the demo file.
Ł	set the data saving type and saving path, details refer to section 2.1.3.
Ā	base mode config, details refer to section 2.1.2.
Î	rover mode config, details refer to section 2.1.2.
00	Ntrip settings, to receive correction data and forward the NTRIP correction
	data received to the board. Enter Ntrip parameters host, port, username,
	password and mount point, and add the configuration to the list on the right

then start the stream.

Config		Status	Caster Host	User	MountPoint	Fraguana
 NtripCaster Host 	127.0.0.1	Status	127.0.0.1	test	test	Frequenc 5S
 NtripCaster Port 	2101					
⊧ User	test					
* Password	test					
* Mount Point	test 🗸 🗸					
Send Client GGA	55 ~					
		<				>

Figure 2.15 Ntrip Setting

 Image: open Tersus Rinex Converter, details refer to section 2.3.3.

 Image: open Tersus Update for firmware upgrade, details refer to section 2.3.4.

 Image: set environment preferences as shown below. Set satellite color, set trajectory view display colors, set limit for tracing point clear interval, set limit for output session interval, and set text console clear interval.

 Image: Preferences as the text console clear interval.

 Image: set environment preferences as the text console clear interval.

 Image: set environment preferences as the text console clear interval.

 Image: set environment preferences envintervironment preferences environment preferenc

Trajectory V	iew Display				
Reset	SINGLE	DGPS	FIX	FLOAT	OTHER
Dot Color					
Output Sess	ion Interval	(Hour)		[8
TexConsole		50000			

Figure 2.16 Set environment preferences

Figure 2.17 Tersus Center Version

2.2.3 Skyplot view

The Skyplot view displays the number of GNSS systems (GPS / GLONASS / Beidou / Galileo / QZSS) being tracked by the board or receiver and their elevation / azimuth angle. The different GNSS constellations are distinguished with different colors, which can be configured in Tools - > Preference. The satellite PRN are marked in the figure with capitalized character 'G', 'R', 'B', 'E', 'J' referring GPS, GLONASS, Beidou, Galileo and QZSS constellation respectively. The figure is expressed in polar coordinate system with its direction refers to the azimuth angle and radius refers to its zenith distance (90-elevation angle in degree). Please note the view works only when GPGSV message is logged.

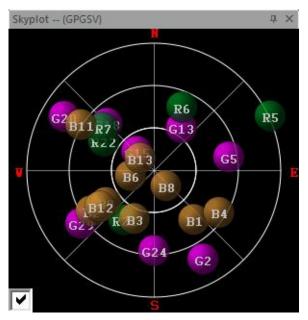
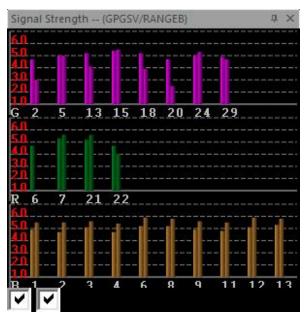
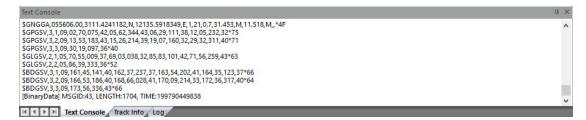


Figure 2.18 Skyplot view

2.2.4 Signal strength view

The Signal strength view shows the signal noise ratio of different frequencies of corresponding GNSS systems (GPS/GLONASS/Beidou/Galileo/QZSS). The horizontal axes represent the number and the PRN. The vertical axes represent the carrier to noise ratio (C/N0) in dB/Hz. Note: the receiver is capable of tracking multiple frequency signals for some constellation, check the box at the bottom left corner to present the C/N0 of different frequency signals. Please note the view works only when GPGSV message is logged.




Figure 2.19 Signal strength view

2.2.5 Console window

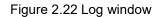
The console window has three tabs: Text Console, Track Info and Log.

The Text console window provides a way for users to communicate directly with the board. Commands can be sent to the board using this window and all ASCII-format messages are displayed. When binary format data is received, the Text console window will show a summary of the binary data, including message type and data length. If the unrecognizable characters are received, they will be considered as error log and shown in Log view.

Figure 2.20 Text console window

> The track info window provides the coordinates at a frequency of 1Hz.

Text Co				
			197796667	
31.190-	136491667	121.593	197843333	34.678
31.1904	136700000	121.593	197873333	34.751
31.1904	136931667	121.593	197915000	34.815
31.1904	137111667	121.593	197880000	34.864
31.1904	136841667	121.593	197748333	34.868
31.1904	37170000	121.593	197766667	34.931
31.190-	136861667	121.593	197775000	34.919
31.1904	137166667	121.593	197910000	34.977
31.190-	136975000	121.593	197896667	34.961


I I Fact Console Track Info Log

The log window lists output messages of ASCII or abbreviated ASCII

format.

Text Console	ф :
16:37:38.080 Abbreviated ASCII Output: < COM2 RTCM1006 ONTIME 10.000000 NOHOLD	
16:37:38.086 Abbreviated ASCII Output: < COM1 BESTPOSB ONTIME 1.000000 NOHOLD	
16:37:38.092 Abbreviated ASCII Output: < COM1 RANGEB ONTIME 5.000000 NOHOLD	
16:37:38.097 Abbreviated ASCII Output: < USB RANGEB ONTIME 1.000000 NOHOLD	
16:37:38.104 Abbreviated ASCII Output: < COM1 SATVISB ONTIME 5.000000 NOHOLD	
16:37:38.112 Abbreviated ASCII Output: < COM2 RTCM1230 ONTIME 30.000000 NOHOLD	
16:37:38.118 Abbreviated ASCII Output: < COM2 RTCM1033 ONTIME 30.000000 NOHOLD	
16:37:38.124 Abbreviated ASCII Output: < COM1 BASEANTENNAA ONTIME 3.000000 NOHOLD	
16:37:38.946 Command Input: - FIX NONE	1
16:37:38.955 Abbreviated ASCII Output: < OK	

2.2.6 Command window

The command window is to input/type commands. Press Enter to send the commands to the boards or receivers. Press Ctrl + Up/Down to get history commands. Press Ctrl + Enter to perform a line feed.

Input Comman	nd>	
Send	([Enter])	L
History	([Ctrl]+[↑]/[↓])	
Line Feed	([Ctrl]+[Enter])	
	([],[])	

Figure 2.23 Command window

2.2.7 Board Info

The type, serial number, firmware version, expire date, TAP ID, expire date of TAP service and current solution of the GNSS board connected will be displayed as shown below.

TYPE	BX50L
SEQID	180001243923434760
VER	1.1.1945_release
ExpireDate	2099/12/30
TAP ID	3473760
ExpireDate(TAP)	2029/10/09
Current Solution	FIX

Figure 2.24 Board Information

Click [View] - [Map] to display Google map as shown below, to show the current position on the map.

Figure 2.25 Map View

2.2.8 Trajectory view

The Trajectory view provides real-time graphic plotting of the current horizontal position (longitude and latitude). Different solution status are presented in different colors, which are defined as:

- SIN (Single point positioning solution)
- DIF (DGPS solution)
- FLT (RTK float solution)
- FIX (RTK fixed solution)
- OTH (others solution status, e.g. Dead Reckoning or invalid solution)

You can turn on certain type of solution status via tool bar or click the erase to clear the trajectory. Please note the view works only when GPGGA message is logged.

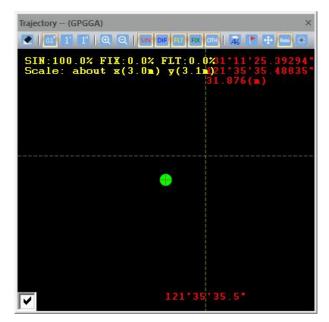


Figure 2.26 Trajectory view

2.2.9 RF spectrum view

The RF SPEC INTERVAL view displays interference at different frequencies for different satellite systems. Clicking on the setting icon in the lower right corner to display interference on a certain frequency of a certain satellite system. When strong interference is present, the wave show anomalies and approaches or breaks the horizontal line. Please note the view works only when RFSPECTRUMCONTROL message is enabled.

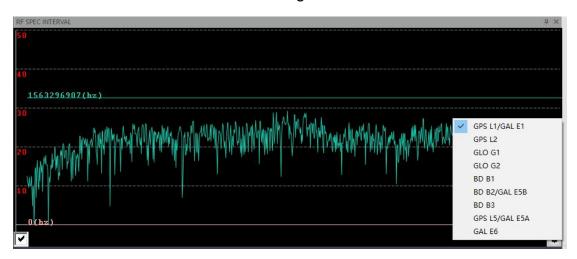


Figure 2.27 RF spectrum view

2.2.10 Status bar

Tersus GNSS Center indicates the working status of the board or receiver with a group of indicators and connection status on the status bar at the bottom of the main interface.

Figure 2.28 Indicators

Table 2 Indicators description

Indicator	Status	Description
Comm	Red	Tersus GNSS Center is not connected to the board
	Green	Tersus GNSS Center is well connected to the board
TAP	Red	TAP is not supported
	Green	TAP is supported

[Port]COM5, [DCB]baud=115200 parity=N data=8 stop=1, [Time]04:56:52, [NO]0

Figure 2.29 Connection status

2.2.11 Other views

Click [View] - [Windows] to display more views, including Altitude, Time (UTC), Velocity and Heading. Please notice that the unit of attitude is meter and that of velocity is km/h. The time system is UTC time and the time shows in the figure may be different from your local time. Please note these views work only when GPGGA, GPVTG and HEADINGA / HEADINGB message is logged.

Figure 2.30 Altitude info

Figure 2.32 Velocity info

Figure 2.31 UTC time

Figure 2.33 Heading info

2.3 Tools

Besides Tersus GNSS Center, there are other four tools integrated into the Tersus Tool Suite software package: Tersus Download, Tersus GeoPix, Tersus Rinex Converter and Tersus Update.

2.3.1 Tersus Rinex Converter

Tersus Rinex Converter is a tool to convert the logged binary observation data into RINEX3.02/3.04 or RINEX2.10 format. You can click the icon in the tool bar or click Tools -> RINEX Converter or double-click the desktop shortcut

Source File:						Open
Save Path:						Save as
			Options			
ource Format:		~	Station Name:			
			Maker Number:			
linex Version: 3.(02	~	Time interval(sec):		~	
	\frown		Time start(GPST):	2017/07/01 0	00:00:00	
		_	Time end(GPST):	2019/12/25 0	8:30:41	
	25US	>]GPS ☑GLO]Output .pos File	BDS	GAL
Tersus Rinex Co	overter V2.6		Proc	essed Epoch:		

Figure 2.34 Tersus Rinex Converter

The detailed usage of Tersus Rinex Converter refers to section 3.4 Convert Raw Data into Rinex.

2.3.2 Tersus Update

Tersus Update is a tool to upgrade firmware for Tersus GNSS products via

serial ports. You can click the icon in the tool bar or click Tools -> GeoPix

or double-click the desktop shortcut **Example** to launch the software.

Select file to update(1/2)				×
Update Setting Update File: Port:	COM3 ~	Baudrate:	460800 ~	Advance Setting	
Version:3.1	TĘ	R		JS	
		< 8	ack <u>N</u> ext >	Cancel	Help

Figure 2.35 Update firmware

Select the upgrade file, select port and baud rate, and click [Next]. After the firmware is upgraded successfully, it will prompt a windows indicating successful update. Click [OK] and [Finish] buttons to close the firmware upgrade windows, the receiver will reset automatically.

Take BX306 board for example, download the latest firmware file from Tersus official website, and put it in the designated folder of your computer. Launch the Tersus Update software, select the firmware file (.bin format), port, baud rate as 115200 and click [Next] for the firmware update. Details refer to section 3.2 in *User Manual for BX Series GNSS Receiver*.

D

2.3.3 Tersus Download

Tersus Download is to download data files from internal storage of the receiver

to the computer. Double-click the desktop shortcut **to** launch the software.

DownloadPath	c:\TersusData\2019	1225			Select	Viev
☑ Auto Create I Media	RINEX File(\$DownloadP	ath/RINEX) after FreeSpace	500 (SCR0102	КВ	SelectAll	
FileName	j.	UTC Time	Size(Byte)	status	Station ID	

Figure 2.36 Tersus download

Make sure the receiver is connected to the computer through the serial port, click [Refresh] to view the files in the internal storage of the receiver, click [Select] to choose download path, and click [Download] to download files to the designated folder of the computer.

2.3.4 Tersus GeoPix

Tersus GeoPix is a software for processing GNSS observation data collected by UAVs and ground base stations, and tagging EXIF coordinate information of

EVENT moment photos. Double-click the desktop shortcut to launch the software.

orking directo	ry (Picture Dir)	*Base	Data			*Rover Data			
IEM						Offsets between car	mera center and	d phase cente	r
		n			g	FRD (CM)			
		c							
no position in	osition (check it when base data file) Lon	DEG ODMm(DD Heig	MM.mm) ODMS(DD,MM,S ght(Ellipsoid) Met		Jse Event M	lark UTC Time to repla	ce Capture Tim	e of the pictu	ires
FileName	CreateTime	ModifyTime	Capture Time	רט	TC TIME	Latitude	Longitude	Altitude	Po
				<					
		Tagged Original Tagged	Latitude Latitude Longitude Altitude	١	Map Use Go	ogle.com O Ma	p Use Google.cr	n O Baidu	Мар

Figure 2.37 GeoPix main interface

The detailed usage of GeoPix refers to the User Manual for UAV PPK Solution which is available on <u>www.tersus-gnss.com/product/uav-ppk-solution</u>.

3. General operations

This chapter describes generation operations of Tersus GNSS Center software.

3.1 Connect to a BX RTK board

Before connecting the board with Tersus GNSS Center, please make sure the board is powered up and physically connected to the computer via its serial ports. The detailed to establish a physical connection between the board and PC can be found in the User Manual for BX series board or David series receiver. (Available at <u>www.tersus-gnss.com/document</u>). The following steps show how to do connect the Tersus GNSS Center software to the board:

- Launch Tersus GNSS Center, the Config dialog pops up automatically. The dialog can also be found in menu bar Tools -> Config.
- 2) Choose Serial as Connection type and choose the correct port. The baud rate of the board is 115200 by default and changing baud rate is not recommended. The serial port can be found in your windows device manager.

Serial Setting Port: COM3 Save Received Data Baud Rate: 115200 Image: OPF Demo File Setting Image: OPF Input File : Image: OPF Play Speed Loop	Connection Type:	Serial	-
Baud Rate: 115200 Demo File Setting Input File : Play Speed Loop	Serial Setting Port:	сомз 👻	
Input File :	Baud Rate:	115200 🗸	I ON OFF
Play Speed	Demo File Setting	-	· · · · ·
	Input File :		
Apply Ok Cancel	Play Speed		Loop
(pp)	Apply	Ok	Cancel

Figure 3.1 Connection configuration

3) Click [OK] to establish the connection. If the connection is established, the COMM indicator on the status bar will turn to green.

3.2 Configure RTK board with commands

Before starting field work, configure the RTK board or receiver with the Tersus GNSS Center software.

The board or receiver can be configured with commands which you can key in via the **Text Console** window of Tersus GNSS Center.

Text Console	×
SGPGGA,070332.00,,0,00,0.0,,*63 SCPGGA,070333.00,,0,00,0.0,,*65 SGPGGA,070333.00,,0,00,0.0,,*65 SCPGGA,070333.00,,0,00,0.0,,*64 SCPGGA,070333.00,,0,00,0.0,,*66 SCPGGA,070333.00,,0,00,0.0,,*66 SCPGGA,070333.00,,0,00,0.0,,*66 SCPGGA,070333.00,,0,00,0.0,,*66 SCPGGA,070340.00,.0,0,0,0,0,0.0,,*66 SCPGGA,070341.00,,0,00,0.0,,*67 SCPGGA,070341.00,,0,00,0.0,,*65 SCPGGA,070343.00,,0,00,0,0,,*65 SCPGGA,070344.00,,0,00,0,0,,*62 SCPGGA,070345.00,,0,00,0,0,,*61 SCPGGA,070345.00,,0,00,0,0,,*61 SCPGGA,070345.00,,0,00,0,0,,*61 SCPGGA,070351.00,,0,00,0,0,,*65 SCPGGA,070351.00,,0,00,0,0,,*65 SCPGGA,070351.00,,0,00,0,0,,*65 SCPGGA,070351.00,,0,00,0,0,,*65 SCPGGA,070351.00,,0,00,0,0,,*64 SCPGGA,070353.00,,0,00,0,0,,*63	
Text Console Track Info Log	
Command Hara	*
Command Here	

Figure 3.2 Command prompt and text console

3.2.1 Configure the board into base station mode

Commands for base station mode:

fix position 31.1874808 121.58111234 41.4618 log com2 rtcm1074 ontime 1 log com2 rtcm1084 ontime 1 log com2 rtcm1124 ontime 1 log com2 rtcm1005 ontime 10 saveconfig

These commands fix the coordinate of the base station and configure RTCM message to be transmitted. The coordinates are expressed in degree/meter. After each command is sent, the board will automatically acknowledge a '>OK', 38 / 45

which means the configuration takes effect. If no acknowledge is received, please refer to 'trouble shooting' section in the user guide or contact Tersus Technical Support. If the base station coordinate is unknown, you can get it by averaging the point position solution for a while.

Message type	Message Name
1074	Full GPS Pseudoranges and PhaseRanges plus CNR
1084	Full GLONASS Pseudoranges and PhaseRanges plus CNR
1124	Full BeiDou Pseudoranges and PhaseRanges plus CNR
1033	Receiver and Antenna Descriptors
1005 or 1006	Station Description

Table 3 Common used RTCM messages

3.2.2 Configure the board into rover mode

Commands for rover mode:

fix none interfacemode com2 automatic automatic on log com1 GPGGA ontime 1 saveconfig

The rover can automatically recognize the RTCM message and compute RTK solution, so what you need is to make sure the rover position is not fixed, the serial port is in correct mode and it output RTK solution as normal.

After configuration, you can see that the board outputs empty NMEA sentences as the GNSS antenna are not connected to the board.

Details of commands and logs could be found in *Log&Command Reference for Tersus BX GNSS OEM boards*. (Available at

www.tersus-gnss.com/document).

3.3 Data logging

Tersus GNSS Center allows user logging the raw observation, ephemeris or RTK solution to PC. The procedure of data logging is as follows:

- Configure the board output according to your requirement with Tersus GNSS Center. (Details of commands and logs could be found in Log&Command Reference for Tersus BX GNSS OEM boards, available at www.tersus-gnss.com/document).
- 2) Make sure the Save Received Data option in Config window is turned on. Then go to Save Option tab to configure the save directory and log information. Tersus GNSS Center allows to save NMEA data only, binary data only and save all received data. The error messages, e.g. corrupted NMEA sentences, unrecognizable characters will be saved in log file for error diagnosis.

Connectio	Save Option					
	Connection Type:	Serial		~		
	Serial Setting				-	
	Port:	COM5		Save Receiv	ved Data	
	, or d	COMP	~	() ON	OOFF	
	Baud Rate:	115200	~	0.00	0	
	Working Mode					
		opeole Working	Mode			
	Command Co		1 Mode			
	Command C Base Station	Config Mode	Mode			
	Command Co	Config Mode) Mode			
	Command C Base Station	n Config Mode n Mode) Mode			
	Command C Base Station Rovel Statio	n Config Mode n Mode	i Mode			
	Command C Base Station Rovel Statio	n Config Mode n Mode) Mode			

Figure 3.3 Save Received Data option

Connection Save O	ption	
connection save of		
Output Setting	1	
Output direct	ory c:\TersusData\	
Cours Option		
Save Option	ta(tro)	
NMEA o	nly(.nmea)	
Binary d	lata only(.bin)	
Log Option		
Log(.log	1)	

Figure 3.4 Choosing saved data location

3) When Tersus GNSS Center is configured well, it will log received data once the serial connection is established. Tersus GNSS Center will create a sub-directory in the output directory named with the date (in yyyymmdd format) and save the data of each connection with a single file named with the starting time (hhmmss.trs or hhmmss.nmea).

3.4 Convert Raw Data into Rinex

The receiver independent exchange format (RINEX) is commonly used in post GNSS data processing missions. Tersus GNSS Center allows user to convert the logged binary observation data into RINEX3.02/3.04 or RINEX2.10 format. Here is guidance for the conversion:

- 1) Select **Tools -> RINEX Converter** to initiate the Tersus RINEX Converter.
- 2) Click [Open] to select the logged binary observation file. An alternative way is drag the file onto the text box. The output RINEX file will be stored in the same directory as the binary file. You can also change it by click [Save as]. Please note that the output RINEX file name is the same as the binary file as well by default.
- 3) Choose the source format according to your board/receiver type. It also supports converting RTCM3.2 messages into RINEX as well, but an approximate UTC time of start logging need to be provided.
- 4) A Station Name should be extracted from the source file before the conversion. If the Time Interval option is ticked, the converter also allows to downsampling the observation data.
- Click **Process** and the RINEX files will be found in the folder of Save Path.
 There are four kinds of RINEX files, including:
 - .yyo file observation file
 - .yyn file GPS ephemeris file
 - .yyg file GLONASS ephemeris file
 - .yyc file Beidou ephemeris file
 - .yyl file Galileo ephemeris file
 - .yyp file All ephemeris file

Note: *yy in file extension is two digits of year.

R Tersus Rinex C	onverter		×
Source File:		Open	
Save Path:		Save as	
		Options	
Source Format:	~	Station Name:	
		Maker Number:	
Rinex Version:	3.02 ~	Time interval(sec):	
		Time start(GPST): 2017/07/01 00:00:00	
т	RSUS	Time end(GPST): 2019/12/25 08:30:41	
15		Constellation: GPS GLO BDS GAL	
	x Converter V3.6 1018 Tersus GNSS	Processed Epoch:	
		Process Quit AboutBPE	

Figure 3.5 Converting data

4. Terminology

BDS	BeiDou Navigation Satellite System
CMR	Compact Measurement Record
eMMC	Embedded Multi Media Card
GLONASS	GLObal NAvigation Satellite System
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
PC	Personal Computer
РРК	Post-Processing Kinematic
PPS	Pulse Per Second
RINEX	Receiver Independent Exchange format
RMS	Root Mean Squares
RTK	Real-Time Kinematic
RTCM	Radio Technical Commission for Maritime Services
USB	Universal Serial BUS
UTC	Universal Time Coordinated

Proprietary Notice

All Information in this document is subject to change without notice and does not reflect the commitment on Tersus GNSS Inc. No part of this manual may be reproduced or transmitted by all means without authorization of Tersus GNSS Inc. The software described in this document must be used in terms of the agreement. Any modification without permission from Tersus GNSS Inc. is not allowed.