

Version V2.2-20211208

User Manual For Tersus GeoBee30 Cost-effective Solution for CORS

©2021 Tersus GNSS Inc. All rights reserved.

Sales Enquiry: sales@tersus-gnss.com Technical Support: support@tersus-gnss.com More details, please visit www.tersus-gnss.com

Revision History

Version	Revision Date	Change Summary
1.0	20210113	Initial Release
2.0	20210722	Add section 5
2.1	20211130	Add section 4.4 & section 4.5
2.2	20211208	Upgrade section3.1

Table of Content

Revision History	2
Table of Content	3
List of Figures	5
List of Tables	7
1. Introduction	8
1.1 Overview	8
1.2 System Structure	9
1.3 Devices in GeoBee30 Package	14
1.3.1 David30 GNSS Receiver	14
1.3.2 AX4E02 GNSS Antenna	15
1.3.3 TR600 Ntrip Modem	16
1.3.4 Other accessories	17
1.4 Installation Guide	21
1.4.1 Install bottom plate for fixing David30	21
1.4.2 Install bracket and slide rail for TR600	22
2. General Operation	23
2.1 Configurations	23
2.1.1 Accessories Required	23
2.1.2 Configure David30	23
2.1.3 Configure TR600	27
2.2 Configuration Parameters	33
2.3 Factory Reset	34
2.4 Firmware Upgrade	
2.5 Observation Data Storage	
3. Specifications	
3.1 David30 GNSS Receiver	39
	3

	3.2 AX4E02 GNSS Antenna	. 42
	3.3 TR600 Ntrip Modem	. 43
4.	Typical Application	. 45
	4.1 GeoBee30 working under Ntrip server mode	. 45
	4.2 GeoBee30 working under Ntrip client mode	.46
	4.3 Check Link Status using Web portal	.47
	4.4 Group User Management Function	.48
	4.5 Nearest Base Station Function	. 52
5.	Lightning-Proof Design	.53
	5.1 Direct lightning protection	. 53
	5.2 Inductive lightning protection	.54
	5.2.1Power lightning protection	. 54
	5.2.2Lightning protection for communication cables	.54
	5.2.3Grounding net	.55
6.	Terminology	.56

List of Figures

Figure 1.1 GeoBee30 System Structure	9
Figure 1.2 David30 GNSS Receiver	. 14
Figure 1.3 AX4E02 GNSS Antenna	15
Figure 1.4 TNC-J to TNC-J Cable (GNSS antenna cable, 25m by defa	ault)
	. 15
Figure 1.5 TR600 side view 1	. 16
Figure 1.6 TR600 side view 2	. 16
Figure 1.7 COMM1-Bluetooth Module	17
Figure 1.8 DC-5pin AC Power Adapter with 1.2m cable	17
Figure 1.9 COMM2-7pin to TR600-DC-2pin & DB9 female & USB cable	e18
Figure 1.10 COMM1-7pin to DB9 male Cable	18
Figure 1.11 RS232 to RS485 converter	. 19
Figure 1.12 DB9 female to TR600-RS485-5pin cable	. 19
Figure 1.13 DB9 Female to USB Type A Male converter cable	19
Figure 1.14 USB Type A Female to USB (Micro +Type C) OTG cable	. 19
Figure 1.15 4G antenna for TR600	. 20
Figure 1.16 Wi-Fi antenna for TR600	. 20
Figure 1.17 Ethernet cable 1.5m	. 20
Figure 1.18 Bottom plate for fixing David30	21
Figure 1.19 Dimension of bottom plate	21
Figure 1.20 TR600 dimension	22
Figure 1.21 Bracket for TR600	22
Figure 1.22 Slide rail for TR600 (20cm)	. 22
Figure 1.23 TR600 with bracket and slide rail	. 22
Figure 2.1 Configure David30 using Nuwa app	. 26
Figure 2.2 Properties for Internet Protocol (TCP/IP)	. 27
Figure 2.3 Set IP address as 'Obtain an IP address automatically'	27

Figure 2.4 Connect Ethernet cables	28
Figure 2.5 Login TR600 configuration interface	28
Figure 2.6 Check the current connection status	29
Figure 2.7 Select network in Network Settings	29
Figure 2.8 Mobile communication network settings	30
Figure 2.9 WAN setting	30
Figure 2.10 WiFi Client setting	31
Figure 2.11 LAN setting	31
Figure 2.12 Set Ntrip info in Ntrip configuration interface	32
Figure 2.13 Set Virhub configuration	33
Figure 2.14 Factory Reset for TR600	34
Figure 2.15 Update firmware for David30	35
Figure 2.16 Update firmware for TR600	36
Figure 2.17 Launch STRSVR in RTKLIB	37
Figure 2.18 Input NTRIP Client information	37
Figure 2.19 Output information	37
Figure 2.20 Start saving observation data	38
Figure 3.1 Panel of David30	41
Figure 3.2 Pin Definition of the COMM1/COMM2/DC ports	41
Figure 4.1 GeoBee30 under Ntrip server mode	45
Figure 4.2 GeoBee30 under Ntrip client mode	46

List of Tables

Table 1 Definition of LEDs	14
Table 2 David30 GNSS Performance	39
Table 3 Pin Definition of connectors on David30	41
Table 4 AX4E02 GNSS Antenna	.42
Table 5 Ntrip Modem TR600 specifications	43

1. Introduction

This chapter mainly introduces the overview, system structure, package list, and installation guide of the Tersus GeoBee30, which is an upgraded version of Tersus GeoBee.

1.1 Overview

The Tersus GeoBee30 is a dedicated and cost-effective solution to establish a permanent reference station. With Tersus Ntrip Caster Service, Ntrip Modem and David30 Receiver, the GeoBee30 opens the possibility for users to transmit Real Time Kinematic (RTK) corrections via Internet (Ethernet or 2G/3G/4G) in a simple, user-friendly way, just using a SIM card or Ethernet cable without any need of a static IP. GeoBee30 can also work as GNSS Rover to receive RTK corrections from Tersus Ntrip Caster or any CORS service.

Ntrip server mode: use David30 GNSS receiver to create a base station. This temporary base or CORS are for surveying, agriculture, UAV, machine control, and etc. It is also ideal for deformation monitoring. Tersus GNSS Inc. provides Ntrip Caster to transfer data.

Ntrip client mode: connect David30 or other Tersus GNSS receivers to Tersus Ntrip Caster or any Ntrip/CORS service. David30 is mainly used for surveying, and also used as a GNSS sensor in various applications, such as mobile mapping, UAV, machine control, agriculture, and etc.

1.2 System Structure

Set up the GeoBee30 system according to the figure below.

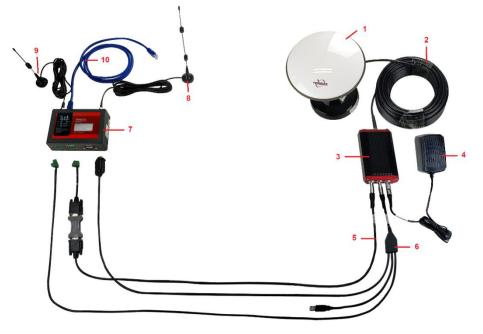


Figure 1.1 GeoBee30 System Structure

No.	Name
1	Antenna (AX4E02 in the figure above, customizable)
2	TNC-J to TNC-J cable (25m by default, customizable)
3	David30 GNSS Receiver
4	Power Adapter (short for 'DC-5pin AC Power Adapter with 1.2m cable')
5	COMM1 cable (short for 'COMM1-7pin to DB9 male cable')
6	COMM2 cable (short for 'COMM2-7pin to TR600-DC-2pin & DB9 female & USB cable')
7	Ntrip Modem TR600
8	4G antenna for TR600
9	Wi-Fi antenna for TR600
10	Ethernet cable 1.5m

Note:

- There are two configuration modes for GeoBee30. GeoBee30 system is zero configuration if customer adopts GeoCaster provided by Tersus GNSS Inc., as GeoBee30 is pre-configured when shipped out of factory. GeoBee30 system needs to be configured if customers demand to set up caster by themselves.
- David30 GNSS receiver uploads RTCM stream to the NTRIP caster using Ethernet (default) or Wi-Fi or 2G/3G/4G sorted by priority.
 - a. When using Ethernet to configure TR600, use Ethernet cable to connect the LAN2 port of TR600 to your computer, connect LAN1/WAN port to a router to access internet. Make sure the IP address of your computer is set as "Obtain an IP address automatically". Type 192.168.100.1 in your browser, use username "root" and "1234" to enter web config page, make sure the DHCP is on in LAN setting so that TR600 can automatically obtain an IP address.
 - b. When using Wi-Fi to configure TR600, search SSID "TR-600" on your computer and connect it use password **12345678**. Type **192.168.100.1** in the browser of your computer or mobile phone or tablet, use username "**root**" and "**1234**" to enter web config page.

Please note, both Wi-Fi client and Wi-Fi hotspot of Ntrip Modem TR600 are supported, however they cannot be enabled simultaneously. Wi-Fi hotspot function is to share internet connection to other devices or configure TR600 via Wi-Fi. Wi-Fi client function is to use Wi-Fi connection to communicate with caster when Ethernet connection is not available.

When using Wi-Fi to communicate with caster, choose Wi-Fi Client to access internet in Network Settings of TR600. Select a SSID to be used and type the Wi-Fi password in the PSK pin area, click [Save] to save this setting.

	NTRIP Smart Device	Wa	[中文 English] ming: Setting effect afte
Status Network Settings • Network Select • Wirelesz Basic • Wirelesz Advanced • WAN	SSID: wellcom	3:4E:0D:63	
• WIFI Client LAN WIFI Hotspot	Security: WPA2- PSK pin: Type: DHCP Static IP:		
NAT Rule NTRIP CFG Virhub	Mask: Gateway:		
System Tools Reboot System	DRS1: DRS2: Save Revert		
	WIFI AF Note: If wifi is disabled, the some time t	first time clicking "Refr o output the result.	and the second
	SSID	Signa1(0-100)	Security
	Signal X360-1030545	23	[WPA2]
	12345679	64	[WPA2]
	fu	62	[WPA2]
	11352937	36	[WPA2]
	GNSS-1032686	23	[WPA2]
) heloskin	38	[WPA2]
	ChinaNet-8xq8	23	[WPA2]
	wellcores_tp	23	[WPA2]
	<pre>wellcores_tp</pre>	23	[WPA2] [ESS]
	Heloskin	26	

Figure 1.2 Wi-Fi client setting

- c. When using 2G/3G/4G network for data transmission, GeoBee30 will consume no more than **3GB** mobile data per month. Please contact with your local mobile carrier if there is any restrictions on wap or data usage.
- 3) Place the antenna (AX4E02 in the Figure 1.1) in the outdoor open environment. Install Wi-Fi antenna when Wi-Fi connection is for data communication, and set TR600 as Wi-Fi client. Install 4G antenna when 2G/3G/4G SIM card is used for data communication.
- 4) GeoBee30 starts to work in auto start mode by default once it is powered up. According to the autonomous positioning (without RTK or DGPS), it smoothes out the average value to be the base coordinate. GeoBee30 outputs the RTCM32 corrections data and sends to the Ntrip server through LAN, WIFI or 2G/3G/4G mobile network.
- 5) For the **known** phase center coordinates of the AX4E02 antenna, the two configuration methods are as follows:
 - a. Use the COMM1-Bluetooth module in the package, unplug the COMM1 cable and insert the Bluetooth module to the COMM1 port of David30 GNSS receiver. Launch Nuwa app on an android device, connect David30 by paring Bluetooth. Create a base configuration with manual start in radio mode¹, fill in the base coordinates, antenna height and Ntrip network information. Detailed operation refers to *User Manual for*

David30 GNSS Receiver. After completing the configuration, disconnect the Bluetooth connection, disconnect the Bluetooth module and connect back the COMM1 cable.

← Create Bas	e Config	
Startup	Manua	I start >
Base Coordniate	Ģ	
Lat(°)	0.00000000	U
Lon(°)	0.00000000	U
Height(m)	0	.000
BLH(WGS84)	O NEH(Local)	
Ant Height(m)	SI	ant 0.0 >
Data Link		Radio 🗦
Baud Rate	1	15200 >
Differential Format	RT	CM3.2 >
	ж	

Figure 1.3 Configure David30 using Nuwa app

Note1: Use Radio Mode in Nuwa when configuring GeoBee30. Because the external

radio and TR600 are both external data link, the principal is the same (log the data

from David30 to external data link).

b.	Use the 'DB9 Female to USB Type A M	lale converter cable' to connect the COMM1
	cable in Figure 1.1 and a computer, op	en Tersus GNSS Center application on the
	computer, and type below commands	in the command window:
	UNLOGALL //remove	all logs
	UNDULATION USER 0.0 //Set user	specified undulation value for ellipsoid height ²
	FIX POSITION B L H //B: latitude	e (degree), L: longitude (degree), H: height (m)
	For example: FIX	POSITION 31.24523012 121.58922341 40.35
	or POSAVE ON 0.02 //Turn	on position average for 0.02 hour (72s)
	LOG COM2 RTCM1006 ONTIME 10	//output the base coordinate
	LOG COM2 RTCM1074 ONTIME 1	//output GPS observations
	LOG COM2 RTCM1084 ONTIME 1	//output GLONASS observations
	LOG COM2 RTCM1094 ONTIME 1	//output Galileo observations
	LOG COM2 RTCM1114 ONTIME 1	//output QZSS observations
	LOG COM2 RTCM1124 ONTIME 1	//output BeiDou observations
	LOG COM2 RTCM1230 ONTIME 10	//output GLONASS bias information
	LOG COM2 RTCM1033 ONTIME 10	//output antenna, receiver information
	(Below commands output ephen	nerides, not default configuration)
	LOG COM2 RTCM1019 ONTIM	E 5 //GPS ephemerides
	LOG COM2 RTCM1020 ONTIM	E 5 //GLONASS ephemerides
	LOG COM2 RTCM1042 ONTIM	E 5 //BeiDou ephemerides
	LOG COM2 RTCM1044 ONTIM	E 5 //QZSS ephemerides

LOG COM2 RTCM1046 ONTIME 5 //Galileo ephemerides SAVECONFIG //save configuration Note2: If customer needs to use global geoidal height model EGM96 for mean sea level height, type below command to replace the undulation command above. UNDULATION EGM96 //Set EGM96 geoidal height model More details about logs and commands refer to *BX40C log & Command document*.

Power cycle the receiver or input RESET command to make the above configuration effective.

- 6) The known phase center coordinates of the AX4E02 antenna can be obtained from surveying and mapping department of local government, or calculated from commercial software such as Bernese or Gamit.
- 7) If customer needs GeoBee30 work with local CORS system, calculate the accurate coordinate of the base station under the local CORS framework and configure the base station with this accurate coordinate. The calculation to obtain this accurate coordinate can be PPP method and coordinate conversion via point correction using Nuwa app. You can contact Tersus technical support for detailed method.

1.3 Devices in GeoBee30 Package

1.3.1 David30 GNSS Receiver

David30 has four interfaces which is shown below.

Figure 1.5 David30 GNSS Receiver

The DC port of David30 is for power input and CAN port, COMM1 port is for COM1, PPS and Event, and COMM2 port is for COM2 and USB ports, refer to section 3.1 for detailed specification of David30.

LED	Colour	Description
		ON: David30 in Fixed solution.
RTK	Red	Blink: David30 in Float and DGPS solution.
		OFF: David30 in other position types.
		ON: normal state.
SV	Red	Blink: David30 is searching satellites.
PWR	Blue	ON: the David30 is power on.

1.3.2 AX4E02 GNSS Antenna

AX4E02 GNSS antenna is used to receive the RF signal from the satellites, and it must be connected to the David30 with the GNSS antenna cable in the package.

Figure 1.6 AX4E02 GNSS Antenna

Figure 1.7 TNC-J to TNC-J Cable (GNSS antenna cable, 25m by default)

1.3.3 TR600 Ntrip Modem

Figure 1.8 TR600 side view 1

Figure 1.9 TR600 side view 2

1.3.4 Other accessories

Figure 1.10 COMM1-Bluetooth Module

This Bluetooth module is used to connect to the COMM1 port of David30 receiver.

The SSID of this Bluetooth module is BT420R-xxxxx_xxxxx, where the first xxxxx is the last 5 digits of the Bluetooth serial number, which is printed on the Bluetooth module. No password is needed to pair with it.

Figure 1.11 DC-5pin AC Power Adapter with 1.2m cable

Figure 1.12 COMM2-7pin to TR600-DC-2pin & DB9 female & USB cable

<u>I</u> The circular connector of the COMM2-7pin to TR600-DC-2pin & DB9
 female & USB cable can only be installed into the COMM2 port of
 David30 GNSS Receiver.

The COMM2-7pin to TR600-DC-2pin & DB9 female & USB cable has two functions:

- Connect to the USB port of a computer to download the file saved on the internal eMMC, refer to section *Download Files from Internal eMMC* in David30 user manual;
- 2) Connect to USB Type A Female to USB (Micro +Type C) OTG cable (refer to Figure 1.14) to connect the Android phone or controller with David30.

Figure 1.13 COMM1-7pin to DB9 male Cable

<u>!</u>	The circular connector of the COMM1-7pin to DB9 male cable can only
	be installed into the COMM1 port of David30 GNSS Receiver.

Figure 1.14 RS232 to RS485 converter

Figure 1.15 DB9 female to TR600-RS485-5pin cable

Figure 1.16 DB9 Female to USB Type A Male converter cable

Figure 1.17 USB Type A Female to USB (Micro +Type C) OTG cable

Figure 1.18 4G antenna for TR600

Figure 1.19 Wi-Fi antenna for TR600

Figure 1.20 Ethernet cable 1.5m

1.4 Installation Guide

1.4.1 Install bottom plate for fixing David30

Figure 1.21 Bottom plate for fixing David30

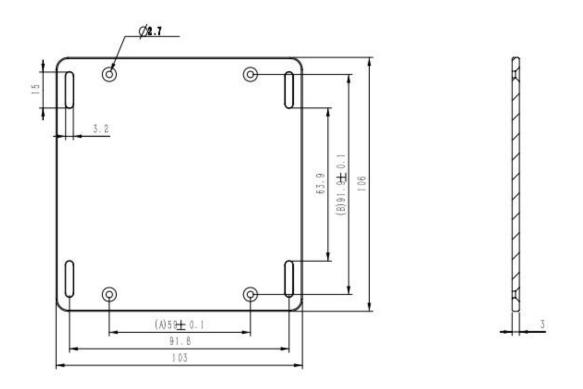


Figure 1.22 Dimension of bottom plate

Use the screws in the package to secure the bottom plate to the back of the David30 GNSS receiver. Hence it can be fixed to the places required.

1.4.2 Install bracket and slide rail for TR600

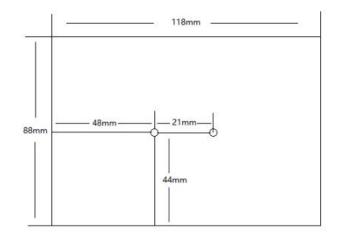


Figure 1.23 TR600 dimension

Figure 1.24 Bracket for TR600

Figure 1.25 Slide rail for TR600 (20cm)

Figure 1.26 TR600 with bracket and slide rail

Fix the bracket to the back of the TR600 with two screws, slide the rail into the bracket, and then use screws to fix the whole set to the places required.

2. General Operation

This chapter introduces how to use GeoBee30, configuration parameters, factory reset and firmware upgrade.

2.1 Configurations

2.1.1 Accessories Required

The accessories required are listed below:

- 1) One Power Adapter (DC-5pin AC Power Adapter with 1.2m cable);
- 2) One COMM1 cable (COMM1-7pin to DB9 male cable);
- 3) One DB9 Female to USB Type A Male Converter cable;
- 4) One COMM1-Bluetooth module;
- 5) One Ethernet cable for connecting TR600 and PC or customized device.

2.1.2 Configure David30

Configuring David30 is able to be done using Tersus GNSS Center via cables or using Nuwa app via Bluetooth.

2.1.2.1 Configuring David30 using Tersus GNSS Center

The detailed steps of configuring David30 using Tersus GNSS Center via cables are listed below:

- 1) Use the 'DB9 Female to USB Type A Male Converter cable' to connect the COMM1 cable (COMM1-7pin to DB9 male cable) and a computer;
- 2) Open Tersus GNSS Center application on the computer and type below commands in the command window:

UNLOGALL //remove all logs UNDULATION USER 0.0 //Set user specified undulation value for ellipsoid height² FIX POSITION B L H //B: latitude (degree), L: longitude (degree), H: ellipsoid height (m) For example: FIX POSITION xx.xxxxx xx.xxx xx.xxx

or POSAVE ON 0.02 //Turn on position average for 0.02 hour (72s) LOG COM2 RTCM1006 ONTIME 10 //output the base coordinate //output GPS observations LOG COM2 RTCM1074 ONTIME 1 LOG COM2 RTCM1084 ONTIME 1 //output GLONASS observations LOG COM2 RTCM1094 ONTIME 1 //output Galileo observations LOG COM2 RTCM1114 ONTIME 1 //output QZSS observations LOG COM2 RTCM1124 ONTIME 1 //output BeiDou observations LOG COM2 RTCM1230 ONTIME 10 //output GLONASS bias information LOG COM2 RTCM1033 ONTIME 10 //output antenna, receiver information LOG COM2 RTCM1019 ONTIME 300 //output GPS ephemerides LOG COM2 RTCM1020 ONTIME 300 //output GLONASS ephemerides LOG COM2 RTCM1042 ONTIME 300 //output BeiDou ephemerides LOG COM2 RTCM1044 ONTIME 300 //output QZSS ephemerides LOG COM2 RTCM1046 ONTIME 300 //output Galileo ephemerides SAVECONFIG //save configuration

Note 2: If customer needs to use global geoidal height model EGM96 for mean sea level height, type below command to replace the undulation command above.

UNDULATION EGM96 //Set EGM96 geoidal height model

More details about logs and commands refer to *BX40C Log* & *Command* document.

 Power cycle the receiver or input RESET command to make the above configuration effective.

2.1.2.2 Configuring David30 using Nuwa app

The detailed steps of configuring David30 via Bluetooth are listed below:

- 1) Unplug the COMM1 cable on the COMM1 port of David30;
- Insert the 'COMM1-Bluetooth module' into the COMM1 port of David30 GNSS receiver;
- Connect the AX4E02 GNSS antenna to David30 with the GNSS antenna cable;
- 4) Power on the David30 GNSS receiver by plugging the AC power adapter;
- 5) Run Nuwa app, click [Device] -> [Connect];
- 6) Select [David] in the option list of Device Type;
- 7) Select [Bluetooth] in the option list of Connect Type;
- Click [Connect Config] -> [Search]. The SSID is BT420R-xxxxx_xxxxx. No password is needed to pair with it;
- 9) Click [Connect] to enable the communication with David30;
- 10)After the Bluetooth module is connected with David30 successfully, configure David30 as a base with manual start in radio mode, fill in the base coordinates and antenna height, and set Baud Rate as 115200 bps and Differential Format as RTCM3.2. Detailed operation about David30 and Nuwa app refers to the *User Manual for David30 GNSS Receiver* and *User Manual for Nuwa app* which can be downloaded on Tersus website.

← Create Base	Config
Startup	Manual start >
Base Coordniate	♀ ≡
Lat(°)	0.00000000
Lon(°)	0.00000000 U
Height(m)	0.000
BLH(WGS84)	O NEH(Local)
Ant Height(m)	Slant 0.0 >
Data Link	Radio >
Baud Rate	115200 >
Differential Format	RTCM3.2 >
C	ж

Figure 2.1 Configure David30 using Nuwa app

11)After completing the David30 configuration via Nuwa, disconnect the Bluetooth connection, disconnect the Bluetooth module and connect back the COMM1 cable.

<u>!</u>	A Bluetooth device can be removed from the Available Device list by
	pressing it for a few seconds.
	Use Radio Mode in Nuwa when configuring GeoBee30. Because
	the external radio and TR600 are both external data link, the
	principal is the same (log the data from David30 to external data
	link).

2.1.3 Configure TR600

The detailed steps of configuring TR600 are listed below:

1) Set IP address of the PC as 'Automatically obtain IP address';

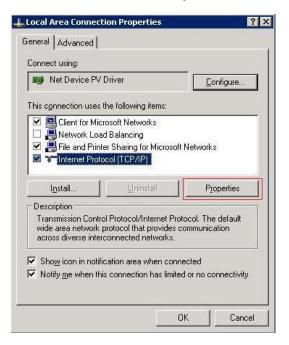


Figure 2.2 Properties for Internet Protocol (TCP/IP)

			supports histrator
	2		
5		19.	
	13	- 67 (
ally			
4	<u>(</u>		_
52	34	1	
		Ady	anced
<u> </u>	OK	-1	Cancel
	ally ses:	ally	cally] ses:

Figure 2.3 Set IP address as 'Obtain an IP address automatically'

 Using Ethernet cable to connect the LAN1/WAN port to a router to access Internet, connect the LAN2 port of TR600 to your PC;

Figure 2.4 Connect Ethernet cables

- 3) Type in 192.168.100.1 or 192.168.1.1 in the browser of PC to enter the web configuration login page;
- 4) Type in username 'root' and password '1234' in the login page;

TR-6	
用户名 (username):	
用户密码 (passwd):	
语言 (language):	ENGLISH T
	登陆(login)

天硕导航

Figure 2.5 Login TR600 configuration interface

5) In the web configuration interface, check the current connection status.

Status	Status:	
	Status.	1.5
Network Settings	Product ID: 240305005050431	
LAN	Version: TR600-W4-1.0.2-11/30/18	
WIFI Hotspot	Running: O days O hours 5 minutes 1 seconds	
NAT Rule	Now: 2018/12/04 15:31:26	
NTRIP CFG	CPU Usage: 12%	
Virhub	RAM Usage: 49%	
System Tools	Manufacturer: Quectel	
Reboot System	Model: EC2OF	
Robooo byboom	Status: Module detected. SIM card not detected	
	Module IMEI: 862107041466806	
	WAN LAN2	
	WAN LAN2	
	WAN Connected to network, IP:192.168.6.48 Connection Status:	
	Connection Status. Virhub connected.	
	Received(Bytes): 581,196	
	Sent(Bytes): 326,069	
	Receive Rate(Byte/s): 4,199	

Figure 2.6 Check the current connection status

6) Select 'WAN&WIFI&MOBILE' for Network option in Network Settings, and

click [Save] to save this setting.

TERSUS	NTRIP Smart Devic	[中文 English] Warning: Setting effect after reboo
 Status Network Settings Network Select Wireless Basic Wireless Advanced WAN WIFI Client LAN WIFI Hotspot NAT Rule NITRIP CFG 	Network Select Select the interface to connect. Network: ICMP Host: Backup ICMP Host: Max Try: External access: Note 1: ICMP Host should be s Note 2: Wifi hotspot will be Internet	WAN&WIFI&MOE MOBILE(2G/3G/4G) WAN WIFI WAN&MOBILE WAN&WIFI WIFI&MOBILE WAN&WIFI WIFI&MOBILE Closed when using wifi to connect to
• Wirhub • System Tools • Reboot System	Save Revert	

Figure 2.7 Select network in Network Settings

7) For Wireless Basic, it is to configure 2G/3G/4G network parameters. Consult your local mobile carrier for the APN settings. Below screenshot is taking Telstra from Australia for example, Telstra.wap is auto selected as the APN. The APN mode can also be manually selected, prepare your local

APN info and fill in manually.

• Status	Basic Cfg	
• Network Settings • Network Select	Get the params of mobile op	peration before using it.
 Weiveless Basic Wireless Basic WAN WIFI Client LAN WIFI Hotspot NAT Rule NTRIP CFG Virhub System Tools Reboot System 	APN Mode APN: Service Code: Select Network Manually: PPP User Name: PPP User Password: Net Standard: Dial Mode: Idle Time/Duration(m): Wake Number: Wake Passwd: Note : Generally do not haw can be.	Auto Select Telstra wap *99# ctnet@mycdma.cn Auto Switch Start_up 5 1234 re to set up, use the default setting

Figure 2.8 Mobile communication network settings

8) For the WAN setting, use the default DHCP as most routers support DHCP. The WAN is connected to your router's LAN, then the router will assign an IP address to the TR600 modem.

Status	WAN		
Status Network Settings Network Select Wireless Basic Wareless Advanced WAN WIFI Client LAN WIFI Hotspot NAT Rule NTRIP CFG Virhub System Tools Reboot System	WAN Set up the WAN int WAN MAC: Type: PPFOE Account: PPFOE Password: Static IP: Mask: Gateway: DNS1: DNS2: Note:	erface. 10:9C:94:99:A0:91 DHCP	

Figure 2.9 WAN setting

9) If WIFI Client is chosen to access internet, click WIFI Client in Network Settings, select a SSID to be used and type in the WIFI password in the PSK pin area, click [Save] to save this setting.

RSUS	NTRIP Smart Device	Wa	[中文 English] rning: Setting effect afte
tatus	WIFI Client		
letwork Settings • Network Select	This Page: Set WIFI parameters		
Wireless Basic	WIFI MAC: 28:AD:3E:4E	:0D:63	
Wireless Advanced	SSID: wellcores_t	p	
WAN	Security: WPA2-PSI		
WIFI Client	PSK pin:		
AN	Type: DHCP V		
IFI Hotspot	Static IP:		
AT Rule	Mask:		
TRIP CFG			
'i rhub	Gateway:		
vstem Tools	DNS1:		
eboot System	DNS2:		
	Save Revert VIFI AP 15 Note: If wifi is disabled, the fi		esh", it need
	some time to or	utput the result.	and the second
	SSID	Signa1(0-100)	Security
	X360-1030545	23	[WPA2]
	0 12345679	64	[WPA2]
	fu 11352937	62	[WPA2]
	0 11352937 GNSS-1032686	23	[WPA2]
	heloskin	38	[WPA2]
	ChinaNet-8xq8	23	[WPA2]
	wellcores_tp	23	[WPA2]
	wellcores_tp	23	[WPA2]

Figure 2.10 WiFi Client setting

10)For LAN setting, the LAN configuration is obtained automatically when the

TR600 modem is connected to the router.

• Status	LAN		
 Network Settings LAN 	Set up the router	IP of LAN and set the	DHCP function.
• WIFI Hotspot	Gateway IP:	192.168.2.1]
• NAT Rule	Mask:	255.255.255.0	
NTRIP CFG	DHCP Start IP:	192.168.2.20]
Virhub	DHCP End IP:	192.168.2.254	
System Tools	DNS IP:		
Reboot System	DHCP Lease:	86400 Leas	e: (1~200000)
	DHCP Service:	ON 🔻	
	Note : Gateway IF	o and DHCP Settings must	t be in the same network.

Figure 2.11 LAN setting

11)Set corresponding NTRIP information in NTRIP configuration interface as shown in the upper red box according to the NTRIP information attached as a label on the Ntrip Modem TR600. The information for Data Center 1 in the lower red box is pre-configured as default if Tersus mserver is used. Contact Tersus Technical Support if users need other server for Data Center.

Status	Basic Cfg	
Network Settings LAN	NTRIP Info.	
WIFI Hotspot	NTRIP Info	
NAT Rule	NTRIP Caster Address:	
NTRIP CFG	NTRIP Caster Port:	(1~65535)
Virhub	NTRIP Type server	
System Tools	NTRIP Username:	
Reboot System	NTRIP Password:	
	Mount: RTCM3	0_GG ▼
	Selfdefined Mount:	
	Selfdefined Head1:	
	Selfdefined Head2:	
	Selfdefined Head3:	
	Data Source: COM1	•
	DC1	
	DC IP or Dusname: Mserver.	tersus-gnss.com
	DC Port: 2180	(1~65535)
	Connect mServer: YES •	
	Data Source: COM2	T

Figure 2.12 Set Ntrip info in Ntrip configuration interface

12)Turn on the virtual hub function and configure Virhub according to the information which is shown below. It is pre-configured as default. Contact Tersus Technical Support if users need other server for the Virhub configuration.

• Status	VIRTUAL HUB		
 Network Settings LAN 	This Page: Enable or disable	virhub function.	
• WIFI Hotspot • NAT Rule • NTRIP CFG • Virhub	VIRTUAL HUB Main DC IP(Or Dusname): Main DC Port: Transfer Protocol:	ON ▼ mserver.tersus-gnss.com 2180 (1~65535) UDP ▼	e la
* System Tools • Reboot System	Account: Remote Access IP: Remote Access Mask: Disable Broadcast Packet: Heartbeat Interval: Data Auto: Note :	192.168.168.1 255.255.255.0 OFF ▼ 30 ON ▼	

Figure 2.13 Set Virhub configuration

13)After setting the above configurations, click [Save] and reboot the device to active the configuration. The configuration becomes effective only after the Ntrip Modem TR600 is restarted.

Note: the mserver software and Verhub software are under development, stay tuned.

2.2 Configuration Parameters

The configuration menu of David30 GNSS receiver can be viewed on Nuwa app, the detailed usage of Nuwa app refers to the user manual of Nuwa app which can be downloaded on Tersus official website

https://www.tersus-gnss.com/document/david30-gnss-receiver under the User Manual section.

Each configuration menu of Ntrip Modem TR600 has multiple parameters, and some of them have sub-menus. The detailed configuration parameters refer to section 2.2 of the user manual of Ntrip Modem TR600.

2.3 Factory Reset

The factory reset of David30 GNSS receiver can be completed on Nuwa app by clicking [Reset] on the Device Info interface. The detailed usage of Nuwa app refers to the user manual of Nuwa app which can be downloaded on Tersus official website <u>https://www.tersus-gnss.com/document/david30-gnss-receiver</u> under the User Manual section.

In the TR600 configuration interface, select 'Restore Set' under 'System Tools', click [Restore Set] to reset to factory settings; or long press the RESET button to reset.

TERSUS	NTRIP Smart Device	[中文 English] Warning: Setting effect after reboo
 Status Network Settings LAN WIFI Hotspot NAT Rule NTRIP CFG Virhub System Tools System Tools System Log DTU Log Restore Set Upgrade Firmware Change Password Reboot System 	Restore Set Click this button to revert to factory sett Restore Set	ings!

Figure 2.14 Factory Reset for TR600

2.4 Firmware Upgrade

The updated firmware is released and available for downloading on Tersus web site <u>https://www.tersus-gnss.com/software</u>, or it can be obtained from Tersus technical support. After completing the hardware connection mentioned in 2.1.2 Configure David30, launch the TersusUpdate software on the desktop or click [Tools] -> [UpdateFirmware] in Tersus GNSS Center software.

In the TersusUpdate interface, the software recognizes the serial port and scans the baud rate automatically. Select the Port which is connected to David30 receiver, browse the location for the updated firmware file, and click [Next] to update the firmware.

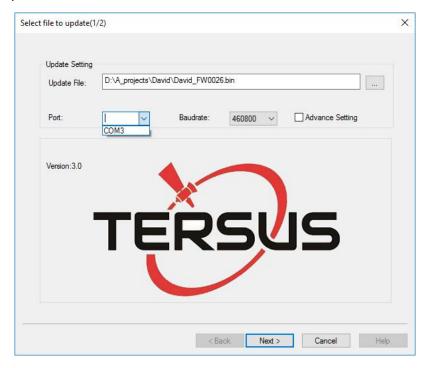


Figure 2.15 Update firmware for David30

Contact Tersus Support for firmware file to upgrade Ntrip Modem TR600. Select 'Upgrade Firmware' under 'System Tools' in the TR600 configuration interface, choose the firmware file, and click [Upload/Download] to upload the firmware.

TERSUS	NTRIP Sn	nart Device	[中文 English] Warning: Setting effect after reboot		
 Status Network Settings LAN WIFI Hotspot NAT Rule NIRIP CFG Virhub 	update.	ware or Download it from Internet Choose File No file chosen	and reboot automatically after Must be connected to		
- System Tools • System Set • System Log • DTV Log • Restore Set • Upgrade Firmware • Change Password • Reboot System	Upload/Download leave this page.	Internet. Upload/Download Note : It need about 1 minute to upload the firmware, please not			

Figure 2.16 Update firmware for TR600

Wait for a few minutes until 'Update' is shown, choose 'Delete the former file'. Click [Update], it will prompt that the file system has been updated, the original setting is cleared, and the system is rebooting.

2.5 Observation Data Storage

Since it is not supported to download observation data remotely, it is recommended using RTKLIB, an open source program for GNSS positioning, to store the observation data as a file in the computer.

The detailed steps of how to store observation data into a computer are as follows:

- Download RTKLIB software from its official website <u>http://www.rtklib.com/</u>, unzip the zip file and find the application rtklaunch.exe
- Double click rtklaunch.exe and then click the third icon to launch STRSVR function.

Figure 2.17 Launch STRSVR in RTKLIB

 In the STRSVR interface, select 'NTRIP Client' as input type, click the Opt button on the right, fill all the information for NTRIP Client Options and then click [OK].

2019/03/12 1	0:15:04 GPST	8	(Connect Time: 00	d 00:00:00	
Stream	Type	Opt	Cmd	Conv Bytes	Bps	
(1) Output (2) Output	File	·		NTRIP Client Optio NTRIP Caster Host 106.14.184.52		> Port √ 7774
🗌 (3) Output		×		Mountpoint TEST ~	User-ID	Password
				String		
▶ <u>S</u> tari	t		tions.			

Figure 2.18 Input NTRIP Client information

4) Select 'File' as output type, click the Opt button on the right, browse a location for the Output File Path, and click [OK].

203	19/03/13 ()2:05:10 GPS	Т		(Conne	act Time: 0d 00:01:25
	Stream	Туре		Opt	Cmd	Conv	Bytes Bps
	(0) Input	NTRIP Client	~				File Options
	(1) Output	File	~				Output File Path
	(2) Output		~	100			C: \Users\Miki\Desktop\TEST
	(3) Output		~	100			TimeTag Swap Intv H ? QK Cancel
_							
	► Start				tions.		Exit

Figure 2.19 Output information

5) Go back to the main page, and click [Start]. The observation data will be

stored in file of the designated folder. The file is being saved as shown below.

2019/03/13	02:00:49 GPS	Т		C	Connect 1	Fime: Od	00:00:11
Stream	Туре		Opt	Cmd	Conv	Bytes	Bps
(0) Input	NTRIP Client	~				5,356	3,376
🔳 (1) Outpu	File	~		100		5,356	4,375
🗌 (2) Outpu	t	~		100		0	C
🗌 (3) Outpu	t	~		122		0	C
	(0) geobeeca:	ster:	2.ters	us-gn	ss.com/12	34	

Figure 2.20 Start saving observation data

3. Specifications

This chapter includes the specifications of David30 GNSS Receiver, AX4E02 GNSS Antenna and TR600 Ntrip Modem.

3.1 David30 GNSS Receiver

Table 2 David30 GNSS Performance

GNSS Performance					
Signal tracking	GPS L1 C/A, L2C, L2P, L5; GLONA	ASS L1 C/A, L2 C/A; BeiDou B1,			
	B2, B3, support BDS-3; Galileo E1, E5a, E5b; QZSS L1 C/A, L2				
GNSS channels	576				
	Single positioning (RMS)	1.5m (Horizontal)			
		3.0m (Vertical)			
	RTK Positioning (RMS)	8mm+1ppm (Horizontal)			
Desition Accuracy		15mm+1ppm (Vertical)			
Position Accuracy		0.25m (Horizontal)			
	DGPS (RMS)	0.5m (Vertical)			
	Link Provision Static (DMS)	2.5mm+0.1ppm (Horizontal)			
	High-Precision Static (RMS)	3.5mm+0.4ppm (Vertical)			
Time to First Fix	Cold Start: <50s				
	Warm Start: <30s				
Data Rate	Measurements	20Hz			
Data Rate	Position	5Hz			
Time Accuracy	ime Accuracy 20ns RMS				
Velocity Accuracy	0.03m/s RMS				
	C/A Code	10cm			
Measurement Precision	P Code(zenith direction)	10cm			
	Carrier Phase (zenith direction)	1mm			

Reacquisition	< 2.0s (typical)		
Storage	In-built 8GB memory		
Physical Description			
Dimension	124*79.5*37 mm (David30 only)		
Weight	≈360g (David30 only)		
	Mechanical Drawing		
	TERSUS DAVID		
	Environmental		
Operating Temperature	-40°C to +70°C		
Storage Temperature	re -40°C to +85°C		
Humidity	95% non-condensing		
Water & dust proof	IP67		
	Power Requirement		
Input Voltage	+5 ~ 36 VDC		
Power Consumption	3.6W		

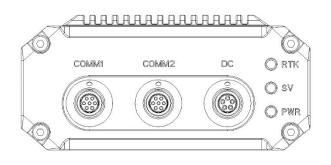


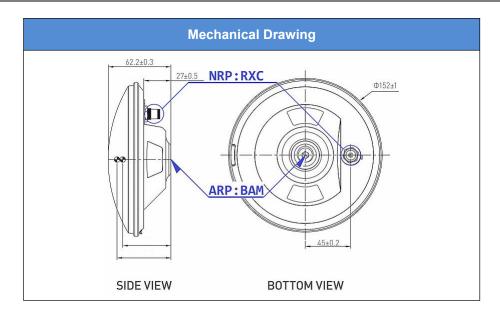
Figure 3.1 Panel of David30

Table 3 Pin Definition of connectors on David30

Connector Pin No.	COMM1 RS-232	COMM2 RS-232	DC
1	PWR	PWR	GND
2	GND	GND	GND
3	TXD1	TXD2	PWR
4	RXD1	RXD2	CAN_L
5	GND	GND	CAN_H
6	PPS	USB D+	
7	EVENT	USB D-	

The pin definition's view from outside to David30 is as below.

Figure 3.2 Pin Definition of the COMM1/COMM2/DC ports



3.2 AX4E02 GNSS Antenna

Table 4 AX4E02 GNSS Antenna

Antenna Specification				
	GPS L1/L2/L5/L-Band, GLONASS L1/L2/L3,			
Tracking signals	BeiDou B1/B2/B3, Galileo E1/E5a/E5b/E6,			
	QZSS L1/L2/L5/L6, SBAS L1/L5 and IRNSS L5			
Impedance	50 Ohm			
Polarization	RHCP			
Axial Ratio	≤ 3dB			
Output VSWR	≤ 2.0			
Peak Gain	≤ 5.5dBi			
LNA Gain	40dB (typical)			
Noise Figure	≤ 2.0dB			
Operation Voltage	3.3~12V DC			
Operating Current	≤ 45mA			
Group Delay Ripple	< 5ns			
Phase Center Offset	59.14mm			
Phase Center Error	± 2mm			
Physical Description				
Dimension	Φ152*62.2mm			
Weight	≤ 500g			
Signal Connector	TNC Female			
Installation connector	BSW 5/8"×11, 12-14mm			
	Environmental			
Operating temperature	-45°C - +85°C			
Storage temperature	-55°C - +85°C			
Humidity	95% non-condensing			
Dust & waterproof	IP67			

3.3 TR600 Ntrip Modem

Table 5 Ntrip Modem TR600 specifications

	Electrical
Input Voltage	+12 ~ +48V DC
Operating Current	350mA @ +12V DC
Standby Current	250mA @ +12V DC
Power Consumption	4.2W (typical)
	Network
Chinese version	2G: GSM/GPRS/EDGE/CDMA2000 1x
	3G:UMTS/WCDMA/HDSPA/HSPA+/TD-SCDMA/CDMA2000
	EVDO
	4G: TDD-LTE/FDD-LTE
Eurasian version (Europe,	2G: GSM/GPRS/EDGE
Middle East, Africa, South	3G: UMTS/WCDMA/HDSPA/HSPA+
Korea, Thailand)	4G: TDD-LTE/FDD-LTE
North American version	3G: UMTS/WCDMA/HDSPA/HSPA+
	4G: FDD-LTE
Australian version (New	2G: GSM

Zealand, Australia, South	3G: WCDMA
America)	4G: FDD-LTE/TDD-LTE
	Operating Frequency Band
Chinese version	TDD-LTE B38/B39/B40/B41
	FDD-LTE B1/B3/B8
	UMTS/HSDPA/HSPA+ B1/B8
	TD-SCDMA B34/B39
	CDMA2000 1x/EVDO BC0
	GSM/GPRS/EDGE 900/1800 MHz
Eurasian version	TDD-LTE B38/B40
	FDD-LTE B1/B3/B7/B8/B20
	UMTS/HSDPA/HSPA+ B1/B8
	GSM/GPRS/EDGE 900/1800 MHz
North American version	FDD-LTE B2/B4/B5/B17
	UMTS/HSDPA/HSPA+ B2/B5
Australian version	FDD-LTE B1/B2/B3/B4/B5/B7/B8/B28
	TDD-LTE B40
	WCDMA B1/B2/B5/B8
	GSM 850/900/1800/1900
	Interfaces
Serial Port	RS232 x1, RS485 x1
Ethernet	RJ45 x2 (LAN, LAN/WAN)
Antenna Connector	SMA Female x1
	Physical
Dimension	118x91x34mm (w/o connectors)
Weight	335g
Operating Temperature	-30°C ~ +80°C
Relative Humidity	95% @ +40°C

4. Typical Application

Typically, GeoBee30 can work under both Ntrip server mode and Ntrip client mode. The system structure for them is the same, the configuration of Ntrip Modem TR600 is different.

4.1 GeoBee30 working under Ntrip server mode

If GeoBee30 is configured to work under Ntrip server mode, fill in the Ntrip information under the [NTRIP CFG] sub menu of TR600 configuration page. Select [server] in the drop-down menu of Ntrip Type, type in the Ntrip password and click [Save] at the bottom of this page to complete the configuration.

The Ntrip information can be found on Ntrip Modem TR600. If there is any question, please contact Tersus Technical Support by email <u>support@tersus-gnss.com</u> without any hesitate.

TERSUS	NTRIP Smart Device	[中文 English] Warning: Setting effect after reboo
 Status Network Settings LAN WIFI Hotspot NAT Rule NTRIP CFG Virhub System Tools Reboot System 	Basic Cfg NTRIP Info. NTRIP Info NTRIP Caster Address: NTRIP Caster Port: NTRIP Caster Port: NTRIP Vsername: NTRIP Vsername: NTRIP Password: Mount Point: Head1: Head2: Head3: Data Source: CON	

Figure 4.1 GeoBee30 under Ntrip server mode

4.2 GeoBee30 working under Ntrip client mode

If GeoBee30 is configured to work under Ntrip client mode, fill in the Ntrip information under the [NTRIP CFG] sub menu of TR600 configuration page. Select [client] in the drop-down menu of Ntrip Type, type in the Ntrip Username and Ntrip password, and click [Save] at the bottom of this page to complete the configuration.

The Ntrip information can be found on Ntrip Modem TR600. If there is any question, please contact Tersus Technical Support by email <u>support@tersus-gnss.com</u> without any hesitate.

TERSUS	NTRIP Smart Device	[中文 English] Warning: Setting effect after reboot
 Status Network Settings LAN WIFI Hotspot NAT Rule NIRIP CFG Virhub System Tools Reboot System 	Basic Cfg NTRIP Info NTRIP Info NTRIP Caster Address: NTRIP Caster Port: NTRIP Type Client V NTRIP Username: NTRIP Password: Mount Point: Head1: Head2:	
	Head3: Data Source: COM1	•

Figure 4.2 GeoBee30 under Ntrip client mode

4.3 Check Link Status using Web portal

Open any browser on your computer (accessible to the Internet) and enter the

following URL in the address bar:

http://GeoBeecaster2.tersus-gnss.com:2101/

In the login window, type the (Ntrip) Client User and (Ntrip) Client Password which are shown on the label of the Ntrip Modem TR600.

NtripName: geobeecaster2.tersus-gnss.com
NtripPort: 2101
Client User: geobeetest1
Client Password: s65uhkJd
Default Mount Point: 240305085154981

Figure 4.3 the login window

After a successful login, the link status and statistics are shown in the figure

below:

Current Time:19-03-19 03:56:19(-0000)

S/C	From IP		MountPoint	S	tartTime		Data Bytes(KB)) DataType 1	.at/long/e	llipsoid heigh	t
Server	221. 178.	124. 152	2403050050	1	9-03-19 02:02:35	(-0000)	2896.824	RTCM3	594690	/1883409/1	07.4092
tatist	tics										
MountPoint		First Start Time		PAS Count/ideal	total	online rate(%)	Error/Vali	d Package	lat/long/ellip	soid height	
240305	0050	18-12-	13 02:52:14(-0	0000)	2569/4610	55.74		0/15265991		7594690/11	883409/107.40
2	403050050	50828 H	ourly online 1	ate	from 03/17 to 03	3/19(-0	1000)				
C	0 01 02 0	3 04 05	06 07 08 09 10	111	2 13 14 15 16 17	18 19 2	0 21 22 23				
03/17	.00 100 99 10	00 100 97	87 98 99 100 97	100 9	9 100 100 100 100 100 100	100 100 10	0 100 100 100				
		0 100 100		100 10	0 100 100 100 100 100 100 1	00 100 10					
03/18 🛙	.00 100 100 10	100 100	100 33 100 100 100	100 10		100 100 10	0 100 100 100				

Figure 4.4 the link status and statistics

4.4 Group User Management Function

The Group User function is mainly used for regional agent to manage and configure Client end-users with different privileges after using GeoBee30 builds a certain number of base stations in a region.

Specifically, under previous versions of Caster software, after the regional agent sends data from the GeoBee30 base station (NtripServer) in the region to the Caster software (NtripCaster) using the username and password distributed by Tersus, the end-user (NtripClient) in the region can only get the differential correction data using corresponding user name and password with the GeoBee30 base station, and the regional agent can not realize the configuration of the end-user's duration, limit days, available base station and other permissions. The new version of Caster software's Group User management function will make up for this weakness. The operation is as follows.

1)Log in to the specified web page and use the designated password to log in to the Group User management function.

Figure 4.5 login interface for group user

2)After logging into Group User, enter the Group User interface, Group means the area where the regional agent is located. The next step is to pull the GeoBee30 base stations in the area into Group, by entering the user name and password of the GeoBee30 base stations distributed by Tersus and clicking Add.

Station-UserName Station-Password Add Del Enter the user name and password of GeoBee30 base

Current Time:20-10-12 10:13:18(+0800)

Figure 4.5 base station list

If you want to remove a GeoBee30 base station that has been added to the Group, you need to enter the corresponding username and password and click the Del button. We need to make sure that the username and password are correct to prevent the base station from being accidentally removed.

3) Start to configure the client end-users in the regional group. Click the Manage Share User button, and enter the ShareUser configuration interface.

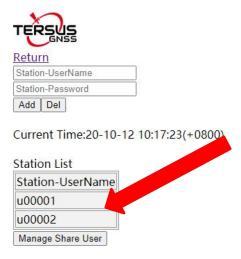


Figure 4.6 manage share user

4)The regional agent inputs the username, password, expired date, limit days and limit numbers of the Client end-user to be configured. Please try to set a complex username and password according to the recommended rules to avoid the cases that different regional agents set the same username and password to cause end-users to connect to different regional base stations. The password is recommended to set a string consisting of letters or numbers.

Return USER PASSWORD ExpireDate(YYYYMMDD) Limit-Days Limit-Nums Add/Edit Del

Current Time:20-10-21 15:10:30(+0800)

 Share User List

 Username
 Password
 ExpiredDate
 LimitDays
 UsedDays
 LimitNums
 Current Nums

 test1
 test1
 20501231
 500D
 0D - 00:00:00
 2
 0

 test2
 test2
 10D
 0D - 00:00:00
 1
 1

Figure 4.7 the share user list

After setting the expired date of an end-user, once the end-user expires, the end-user will not be able to connect to Caster software to get the differential data. If not setting expired date, the Caster system will have no limit for the user's expired date.

After setting the limit days of end-user, the used days of end-user will be refreshed every time the end-user disconnects. When the used days reaches the limit days, the end-user will not be able to connect to Caster software to get the differential data. If more than one NtripClient uses the same user name and password to get the differential data at the same time, the used days of this user will be accumulated. If the limit days is not set, the Caster system will have no limit for the user's limit days.

After setting the limit number of concurrent online users, when every end-user

connects to the Caster system with this username and password, the current connection number will increase by 1. When the current number of connection reaches the limit number of concurrent online user allowed, the system will not be able to connect using this username and password. If the limit number of concurrent online users is not set, the Caster system will have no limit for the concurrent online user using this username and password.

It should be noted that after this update of Caster software, Client end-users are still allowed to use the username and password of GeoBee30 base station to connect and get differential data, and the username and password has no limitation of expiration date, allowable days or concurrently online users. In other words, if the regional agent does not use the new Group User management function, the end-users in the region can keep the previous login method unchanged.

4.5 Nearest Base Station Function

This version of Caster software adds the Nearest Base Station function which will automatically select the nearest base station among all the base stations that is allowed to connect to according to the GGA uploaded by the NtripClient end-user and establish the connection.

The Nearest Base Station operation is very simple, NtripClient end-user can select NearBy mount point when obtaining the Mountpoint. The distance calculation and selection of Nearest Base Station will be done inside Caster software.

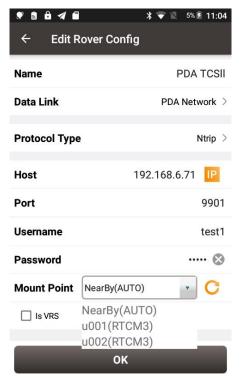


Figure 4.8 select nearby mount point

5. Lightning-Proof Design

The regional surface displacement monitoring system of the ground disaster monitoring uses lightning rods for direct lightning protection, single power supply arrester and communication cable arrester for inductive lightning protection.

5.1 Direct lightning protection

As the specific lightning protection method required, the distance between the lightning rod and the protected object must be not less than 3m. The height of lightning rod is determined in accordance with the 'Rolling Ball Rule' and can be roughly calculated.

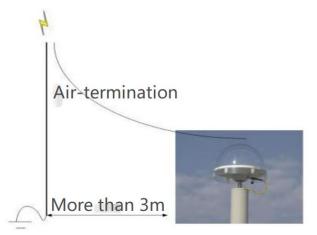


Figure 5.1 Schematic diagram of direct lightning prevention ZGZ-200-2.1 type is selected as the lightning rod:

Figure 5.2 Lightning rod

Technical Parameters

- 1) Lightning current capacity(KA): 200;
- 2) Resistance(Ω): \leq 1;
- 3) Height(m): 2.1;
- 4) Weight(kg): 4.8;
- 5) Maximum wind resistance(m/s): 40;
- 6) Installation size(mm): ϕ 70±0.26.

5.2 Inductive lightning protection

5.2.1 Power lightning protection

Metal cabinet is used to shield inductive lightning, and the power unit is additionally assisted with lightning protection socket and single power supply arrester.

Figure 5.3 Single power lightning arrester

5.2.2Lightning protection for communication cables

Install lightning protection devices at both ends of the communication cable. One end is close to the sensor to avoid current damage to the sensor due to the inductive lightning. And the other device is as close as possible to the data processing equipment.

The grounding terminal of the arrester is connected to the lightning protection net, with anti-rust paint on the connection to ensure conductivity, and the grounding resistance is less than 4Ω .

The lightning arrester has certain insertion loss, which has an impact on the strength of the data signal. So as to be necessary to equip the signal amplifier and other related equipment according to the actual situation.

Figure 5.4 The lightning arrester for communication cable

5.2.3Grounding net

For the construction of grounding net, four 50*50*5mm hot dip galvanized angle steels are used as vertical poles L=2.5m, which are inter connected by 40*4mm hot dip galvanized flat steels, and the buried depth of the ground pole is more than 0.7 meters. The base of the lightning rod is 500*500*60mm reinforced concrete, which is connected with ground net by two 40*4mm hot dip galvanized flat steels(the connection must be welded). The ground resistance is less than 10Ω .

6. Terminology

APN	Access Point Name
BDS	BeiDou Navigation Satellite System
DC	Direct Current
eMMC	Embedded Multi Media Card
EXIF	Exchangeable Image File Format
GLONASS	GLObal NAvigation Satellite System
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
MSL	Mean Sea Level
LAN	Local Area Network
PC	Personal Computer
РРК	Post-Processing Kinematic
PPS	Pulse Per Second
RINEX	Receiver Independent Exchange format
RMS	Root Mean Squares
RTK	Real-Time Kinematic
RTCM	Radio Technical Commission for Maritime Services
UAV	Unmanned Aerial Vehicle, drone
USB	Universal Serial BUS
WAN	Wide Area Network

Proprietary Notice

All Information in this document is subject to change without notice and does not reflect the commitment on Tersus GNSS Inc. No part of this manual may be reproduced or transmitted by all means without authorization of Tersus GNSS Inc. The software described in this document must be used in terms of the agreement. Any modification without permission from Tersus GNSS Inc. is not allowed.