Application Note

Version V1.0

Aerial Survey Application by Using Tersus GNSS RTK/PPK Systems

©2018 Tersus GNSS Inc. All rights reserved.

Table of Content

1	Introduction	2
2	Survey Area	4
2.1	Information about acquired data	4
3	Equipment	4
4	Data Collection and Processing	5
4.1	Surveying the Control Points	5
4.2	Reference Base Station	7
4.3	Aerial Survey	8
4.4	Post-Processing	9
5	Results	12
6	Conclusion	13
7	Appendix: Glossary	14

List of Figures

Figure 1 Connection of the BX306 with Camera	3
Figure 2 Location Map	4
Figure 3 Tersus David GNSS Receiver	5
Figure 4 Surveying the GCPs	6
Figure 5 Position of the GCPS Surveyed by Surveyor	6
Figure 6 GCPs	7
Figure 7 Base Station Recording GNSS Data	8
Figure 8 Base Station Recording GNSS Data	9
Figure 9 Base Station Recording GNSS Data	9
Figure 10 Positions of the Camera	10
Figure 11 Pos of the Camera	. 11
Figure 12 DOM and DEM	12
Figure 13 3D Model	12
Figure 14 The Accuracy of PPK without GCPS	13
Figure 15 The Accuracy of PPK with 4 GCPs	13

1 Introduction

The Tersus Post-Processing Kinematic (PPK) and RTK systems are dual frequency GPS/GLONASS/BeiDou receivers. They allow cm-level position referencing of orthomosaic photos and 3D models without the Ground Control Points (GCPs). It saves hours of mission planning and setup time for surveying.

When using the BX306 board in aerial survey application, you typically set the BX306 into the PPK mode, despite the BX306 can output the real time kinematic results. In such mode, you can eliminate the datalink between the airplane and base station.

All GNSS positioning data are stored on board in the BX306 PPK system, without a real-time data link with reference station. The BX306 connect with hot shoe with the camera, we could get camera cm-level locations during the post-processing procedure after flight. The corrected image positions are directly added to the image EXIF and can be imported to photogrammetric software packages such as Pix4Dmapper or Agisoft Photoscan.

The objective of the test is to validate the accuracy and precision of the BX306 PPK solution.

Figure 1 Connection of the BX306 with Camera

2 Survey Area

The test site is located in Shanghai of China.

Figure 2 Location Map

2.1 Information about acquired data

- > Altitude: 120m
- > Average Ground Sampling Distance (GSD) 2.34 cm
- Area Covered 0.0239 km².

3 Equipment

The BX306 is a cost-efficient GNSS RTK board for cm-level positioning and accurate raw measurements output, which can be integrated with autopilots and inertial navigation units.

In parallel the BX306 receiver records the shutter events of the camera and logs the GNSS raw measurements information during flight on an on-board

memory /SD card.

TY-M400 PPK drone carried the Sony A6000 camera with a 16mm wide angle lens providing a nominal Ground Sampling Distance (GSD) of 2.34cm at 120 meters.

4 Data Collection and Processing

The accuracy of UAV PPK system is validated by comparing the results of aerial surveys with precisely measured verification points (GCPs). The verification workflow includes following steps:

4.1 Surveying the Control Points

The majority of the control points were selected in the crosswalk line and it was very easy to find. All points were measured by a Tersus David GNSS survey grade device using RTK corrections from local QXZW VRS. The ground survey produced a horizontal accuracy of 8mm and a vertical accuracy of 10mm.

Figure 3 Tersus David GNSS Receiver

Figure 4 Surveying the GCPs

	A	В	С	D
1	PT1	N31.167797774	E121.608650556	14.64
2	PT2	N31.167700728	E121.608525457	14.68
3	PT3	N31.167302628	E121.608790463	14.88
4	PT4	N31.166541293	E121.609156887	15.41
5	PT5	N31.166109647	E121.609612978	15.41
6	PT6	N31.165924077	E121.609393613	15.79
7	PT7	N31.166045672	E121.609189010	16.25
8	PT8	N31.167963353	E121.608392907	14.59
9	PT9	N31.168797698	E121.607966002	15.88
10	PT10	N31.168843687	E121.608021910	16

Figure 5 Position of the GCPS Surveyed by Surveyor

Figure 6 GCPs

4.2 Reference Base Station

The PPK does not need a real-time data link with a base station during a flight. However, GNSS raw data has to be recorded by base station in rate 1HZ. (We set the BX306 in the drone with 5HZ refresh rate)

Figure 7 Base Station Recording GNSS Data

4.3 Aerial Survey

- Flight altitudes: 120 meters
- Image overlap: 65% side lap 70%
- > Camera settings: Auto/ shutter priority
- > Camera lenses: 16mm wide angle lens
- Flight time: 7 minutes
- > A total of 46 pictures have taken during the flight.

Figure 8 Base Station Recording GNSS Data

Figure 9 Base Station Recording GNSS Data

4.4 Post-Processing

After flight, camera's positions were produced by combining GNSS recordings of the aircraft with the corresponding information of the reference base station on the ground. We use the software Waypoint to process data in this test. Below figures has shown the positions of the camera after processing.

Figure 10 Positions of the Camera

Station	GPSTime	UTCTime	Latitude	Longitude	H-E11	SDHori	SDHeig Q
	(HMS)	(sec)	(deg)	(deg)	(m)	(m)	(m)
1	2:46:07.5	355550.56	31.167887311874	121.6086577505	15.023	0.013	0.019 1
2	2:48:10.6	355673.70	31.168648298215	121.6087038897	121.946	0.016	0.018 1
3	2:48:17.4	355680.41	31.168385685562	121.6088558278	122.020	0.015	0.017 1
4	2:48:23.8	355686.82	31.168129552340	121.6090128522	121.821	0.015	0.016 1
5	2:48:30.4	355693.47	31.167862185405	121.6091620347	121.780	0.015	0.015 1
6	2:48:36.8	355699.90	31.167609800215	121.6093117743	122.214	0.014	0.014 1
7	2:48:43.5	355706.55	31.167343547138	121.6094712171	123.224	0.010	0.013 1
8	2:48:50.1	355713.20	31.167083321424	121.6096167528	123.823	0.010	0.011 1
9	2:48:56.9	355719.95	31.166823238550	121.6097720325	123.975	0.010	0.010 1
10	2:49:03.5	355726.54	31.166558212682	121.6099321874	124.103	0.009	0.019 1
11	2:49:10.1	355733.19	31.166302227959	121.6100718174	123.327	0.009	0.015 1
12	2:49:25.9	355748.91	31.165899710139	121.6098742141	125.171	0.008	0.015 1
13	2:49:36.4	355759.45	31.166107488258	121.6096106069	125.384	0.009	0.015 1
14	2:49:43.3	355766.31	31.166375853918	121.6094603547	125.432	0.009	0.015 1
15	2:49:49.8	355772.85	31.166633844012	121.6093158516	125.545	0.009	0.015 1
16	2:49:56.1	355779.11	31.166882754394	121.6091600418	125.471	0.009	0.015 1
17	2:50:02.8	355785.83	31.167151789784	121.6090026778	125.273	0.009	0.015 1
18	2:50:09.4	355792.43	31.167415352338	121.6088402044	124.967	0.009	0.015 1
19	2:50:16.0	355799.05	31.167681598972	121.6086880231	124.959	0.009	0.015 1
20	2:50:22.5	355805.57	31.167939975085	121.6085351213	125.154	0.009	0.015 1
21	2:50:29.1	355812.11	31.168200035440	121.6083878265	125.631	0.008	0.015 1
22	2:50:35.7	355818.71	31.168460821914	121.6082392272	125, 516	0.008	0.015 1
23	2:50:42.4	355825.43	31, 168724574678	121.6080812040	125.274	0.008	0.015 1
24	2:50:54.6	355837.67	31, 168685244715	121.6076473933	124.245	0.008	0.015 1
25	2:51:04.8	355847.85	31, 168382978301	121.6076963684	123,639	0.008	0.015 1
26	2:51:11.6	355854.63	31, 168125613693	121.6078566037	123.678	0.008	0.015 1
27	2:51:17.9	355860.93	31, 167871624036	121.6080007613	124.078	0.008	0.015 1
28	2.51.24 6	355867.63	31 167608525995	121 6081621681	123 693	0.008	0 014 1
20	2.51.31 1	355874 15	31 167347207026	121.6083135824	123,837	0.008	0 014 1
30	2.51.37 7	355880 71	31 167083427697	121.6084647898	123 688	0.008	0 014 1
31	2.51.44 3	355887 35	31 166823788/32	121.6086286015	123.243	0.008	0.014 1
32	2.01.44.0	355203 73	31 166566012073	121.6087773070	123.240	0.000	0.014 1
33	2.51.57 3	355900 31	31 1663076/3966	121.6080282533	120.020	0.008	0.014 1
34	2.52.03.8	355006 80	31 1660/0405166	121.0003202000	129.000	0.000	0.014 1
35	2.52.00.0	355013 33	31.16579/903/00	121.0030030030	123.302	0.000	0.014 1
36	2.02.10.0	355026 13	31 165/00502410	121.0092340031	125.069	0.000	0.014 1
37	2.02.20.1	355036 95	31.165700637009	121.0003001210	125.202	0.000	0.014 1
30	2.02.00.0	355043 55	31 165060600927	121.0001000111	125.140	0.000	0.014 1
20	2.02.40.0	300943.00 255050 25	31.100909009021 31.166037156004	121.000000000	125.000	0.000	0.014 1
40	2:02:41.0	200900.00	01.100201100024	121.0004041919	105 000	0.000	0.014 1
40	2:02:03.0	300900.01	31.1004833000010	121.0082009184	105 100	0.008	0.014 1
41	2:53:00.2	355963.23	31.100/00022248	121.0081004749	125.139	0.008	0.014 1
42	2:00:00.0	300909.00	31.107008301425	121.0019480258	105,000	0.008	0.014 1
43	2:53:13.2	355976.21	31.107207805924	121.6077993373	125.005	0.008	0.014 1
44	2:53:19.8	355982.81	31.167530935558	121.6076498528	124.668	0.008	0.014 1
45	2:53:26.4	355989.45	31.167793336119	121.6074883746	124.662	0.008	0.014 1
46	2:53:33.0	355996.01	31.168055422712	121.6073356116	124.739	0.008	U.014 1

Figure 11 Pos of the Camera

We try to show two results, one is without GCP. The other one is with 4 GCPs.

A: With 4 GCPs

We just use the 4 Control points to Process the Photogrammetric by Agisoft PhotoScan software.

Figure 12 DOM and DEM

<u>B: Without Control Points we use the Smart 3D Capture Software to get</u> <u>3D model.</u>

Figure 13 3D Model

5 Results

Figure14 contains the full list of errors for each point, with Smart 3D, No GCPS

A	В	С	D	E	F	G	H	I	J
	Control Points			smart3D no GCP			Accurancy		
	Х	Y	Z	Х	Y	Z	Х	Y	Z
PT2	367388.4	3449021	14.68	367388.5	3449021	14.89	-0.1479	0.1176	-0.21
PT3	367413.1	3448977	14.88	367413.2	3448977	15.13	-0.1148	0.1345	-0.25
PT4	367446.9	3448892	15.41	367447	3448892	15.69	-0.0721	0.0951	-0.28
PT5	367489.8	3448843	15.41	367489.7	3448843	15.66	0.0705	0.1156	-0.25
PT6	367468.6	3448823	15.79	367468.6	3448823	16.01	0.0881	0.1694	-0.22
PT7	367449.3	3448837	16.25	367449.3	3448837	16.58	0.0346	0.1576	-0.33
PT8	367376.1	3449050	14.59	367376.2	3449050	14.81	-0.1133	0.0578	-0.22
PT9	367336.6	3449143	15.88	367336.7	3449143	15.88	-0.1575	0.1352	0
PT10	367342	3449148	16	367342	3449148	16.2	-0.086	0.1469	-0.2

Figure 14 The Accuracy of PPK without GCPS

Figure15 contains the full list of errors for each point, with Photoscan with 4 GCPS

1		Control Points			Photoscan with 4 GCPs			Accurancy		
2		X	Y	Z	Х	Y	Z	X	Y	Z
3	PT2	367388.4	3449021	14.68	367388.4	3449021	14.76	0.0321	0.0076	-0.08
4	PT3	367413.1	3448977	14.88	367413	3448977	15	0.07	0.0345	-0.12
5	PT4	367446.9	3448892	15.41	367446.9	3448892	15.49	-0.0221	0.0641	-0.08
6	PT5	367489.8	3448843	15.41	367489.7	3448844	15.47	0.0605	-0.0344	-0.06
7	PT6	367468.6	3448823	15.79	367468.6	3448823	15.88	0.0581	-0.0406	-0.09
8	PT7	367449.3	3448837	16.25	367449.3	3448837	16.37	-0.0454	0.0676	-0.12
9	PT8	367376.1	3449050	14.59	367376.1	3449050	14.68	-0.0333	-0.0322	-0.09
10	PT9	367336.6	3449143	15.88	367336.6	3449143	15.95	-0.0475	-0.0648	-0.07
11	PT10	367342	3449148	16	367342	3449148	16.07	-0.025	-0.0621	-0.07

Figure 15 The Accuracy of PPK with 4 GCPs

6 Conclusion

Result1 shows that the accuracies are 8cm (planar) and 20cm (vertical) without the use of any ground control

Result2 shows that we could reduce a lot of the GCPs with BX306 PPK.

Our test have shown that the BX306 PPK device is an efficient and reliable system for high accuracy aerial surveys without or use less of physical Ground Control Points. Our PPK workflow allows to easily combine high-resolution aerial images with high-precision GNSS data during the post-processing phase and to create high-quality orthomosaic and digital surface models.

All the test results, pictures and raw data, processing data can be downloaded at the following links: <u>https://pan.baidu.com/s/1Zx_veLnRpz6Br620OA54lw</u>

7 Appendix: Glossary

DSM: Digital Surface Model GCP: Ground Control Point GIS: Geo-Information System GNSS: Global Navigation Satellite Systems GPS: Global Positioning Systems PPK: Post Processing Kinematic RTK: Real Time Kinematic UAV: Unmanned Aerial Vehicle

Proprietary Notice

All Information in this document is subject to change without notice and does not reflect the commitment on Tersus GNSS. No part of this manual may be reproduced or transmitted by all means without authorization of Tersus GNSS. The software described in this document must be used in terms of the agreement. Any reverse software engineer or modification without permission from Tersus GNSS is not allowed.